
Science Transactions © 2023 International Journal of Advances in

Soft Computing and Intelligent Systems (IJASCIS)

2023, Vol 02, Issue 02, 08-21 Original Paper

8

ANALYSIS OF MONOLITHIC AND MICROSERVICES

SYSTEM ARCHITECTURES
FOR AN E-COMMERCE WEB APPLICATION

Allur Shivprasad Raoa, Ajay Kotalwarb

Sanket Mendhec, Dr. Meenakshi Thalord

a,b,c,d AISSMS Institute of Information Technology, Pune, 411001,

shivarao34@gmail.com, kotalwarajay27@gmail.com,

sanketmendhe33@gmail.com, meenakshi.thalor@aissmsioit.org

ABSTRACT

This research paper explores the relative merits of monolithic and microservices architecture for E-

Commerce web applications, using Express JS and Node JS as the primary technologies. The study

provides a comprehensive examination of the two architecture patterns and employs a practical approach

to demonstrate the differences. The architecture is compared based on metrics such as latency,

throughput, response-time, error percentage and cost. The findings indicate that when it comes to large

and complex applications, microservices architecture outperforms monolithic architecture in terms of

scalability and reliability. On the other hand, monolithic architecture offers a simpler and more

straightforward approach for small-scale applications. Moreover, monolithic architecture also provides

better results for a small-scale approach whereas microservices architecture would be an expensive

approach. In the experiment, we found that monolithic architecture gives satisfactory results compared to

microservices architecture while having low traffic. However, the error percentage of monolithic

architecture is extremely high while having heavy traffic whereas microservices architecture handles

heavy traffic with a very low error percentage. In the paper we conclude that the appropriate choice of

architecture pattern should be determined by the unique needs of the project. The objective of this

research is to evaluate the monolithic and microservices architectures for an ecommerce use case, and to

propose guidelines for small and large scale enterprises on which architecture to implement. This is a

generic use case that does not account for any specific conditions or constraints.

KEYWORDS

Microservices, Monolithic, Software Architecture, Comparison, Architectural Metrics, Performance

Testing

1. INTRODUCTION

Modern businesses have used microservices architecture, including Amazon, Netflix, Uber, and

Spotify. Financial, e-commerce, and travel service providers are switching from monolithic to

microservices architecture.

The term "monolithic architecture" refers to a single-tiered software application in which

various components are combined into a single programme from a single platform. Despite the

fact that the application contains multiple components/modules/services, it is built and deployed

as a single application for all platforms (desktop, mobile and tablet). [4] Advantages of

monolithic architecture include:

• Easy to develop and deploy

• Simple to understand and maintain

• Good for small-scale applications

• Cost-effective compared to microservices architecture

mailto:shivarao34@gmail.com
mailto:kotalwarajay27@gmail.com
mailto:sanketmendhe33@gmail.com
mailto:meenakshi.thalor@aissmsioit.org

Rao et al., 2023 Science Transactions ©

9

However, monolithic architecture can become unwieldy and difficult to maintain as applications

grow in size and complexity, leading to a greater risk of codebase degradation and long

development cycles. This is one of the reasons why microservices architecture has gained

popularity.

Microservices architecture is a software design approach where an application is composed of

small, independently deployable services. Each service is focused on performing a specific

business function and can be developed, deployed, and scaled independently of the other

services. Advantages of microservices architecture include:

• Improved scalability

• Better fault tolerance

• Enhanced maintainability

• Increased deployment velocity

• Facilitation of a polyglot development environment

• Ability to evolve systems incrementally

• Better support for continuous delivery and deployment

• Easier integration with diverse systems and technologies

However, microservices architecture can be more complex to set up and manage compared to

monolithic architecture, and can also lead to increased operational overhead and communication

overhead between services. It also requires a high level of technical expertise.

The paper compares the monolithic and microservices architecture specifically for E-Commerce

web applications. Based on the research conducted, the architectures are compared on the

metrics such as latency, throughput, error percentage, response-time and cost. Because of the

ever-increasing popularity of media sites such as Instagram, YouTube, Facebook, etc. e-

commerce businesses are also gaining popularity as it has become easier to market their

products on a huge scale. With this increasing popularity, consequently, network traffic is

bound to increase. This can result in various problems for small businesses such as low

tolerance and inability to scale. Whereas, small scale businesses should not adopt microservices

architecture as it would be expensive and the utilization would be insufficient, which in turn

would make the business harder to sustain. Hence, the research paper focuses on selecting the

appropriate architecture for an e-commerce web application based on the necessities,

requirements and future scope. Moreover, we are not focusing on any particular domain,

platform, or functionality that may be unique to a certain application or service. Instead, we are

using a common and generic scenario that can be applied to any application or service that

follows the monolithic or microservices architecture. This allows us to compare the

architectures in a fair and objective way, without introducing any bias or confounding factors

that may affect the results.

The rest of the paper is organised as follows. Section 2 describes the related work. The research

method and the experimental design are explained in Section 3. Section 4 presents the

implementation details of the proposed approach. This is followed by Section 5, which contains

the experimental results. Finally, Section 6 summarizes and concludes the paper by drawing

some conclusions.

2. LITERATURE REVIEW

The authors of the work by Raj V. et al.[1] offered a comparison of a web application created

utilizing both Service Oriented Architecture (SOA) and microservices architectures. Two

separate parameters are used in the comparison: 1) Architectural metrics for complexity; 2) load

testing for performance. The results demonstrated that even though the microservices design is

sophisticated, it responds to HTTP requests far more quickly than SOA services.

Rao et al., 2023 Science Transactions ©

10

Grzegorz Blinowski et al.[2], compares the Monolithic and Microservice Architecture.

Microservices-based architecture has gained widespread popularity due to its advantages, such

as improved availability, fault tolerance, and horizontal scalability, as well as greater software

development agility. The key lesson is on a single machine, a monolithic performs better than

its microservice-based counterpart.

Microservices and monolithic architectures are compared in terms of performance in Omar Al-

study Debagy's [3], in order to ascertain how these architectures perform in various scenarios

using various testing setups. This paper comes to the conclusion that monolithic applications

and microservices can perform similarly when the application is under normal load. A

monolithic application may perform marginally better than a microservices application under a

light load of fewer than 100 users.

The authors of the work by Konrad Gos et al.[4] compared the Monolithic and Microservices

architecture using the Gatling load testing tool. The tests were performed on PC with Ubuntu

18.04.2 LTS operating system. The applications were deployed with Docker. This paper

compares the monolithic and microservices architecture on different parameters like

Architecture performance, response time by sending a number of HTTP GET and POST

requests. This paper also describes the pros and cons of Monolithic and Microservices

architecture.

Table 1. Literature Review.

Ref.

No

Paper Reference Methodology Conclusion

[1] Performance and

complexity

comparison of

Service Oriented

Architecture and

Microservices

Architecture

In this paper, to compare the

Service Oriented Architecture

and Microservices Architecture

Complexity and Performance

of both the architectures is

analyzed. The authors have

built a standard web-based

application (Vehicle

Management System) to

perform the comparison of two

architectures by sending

various number of requests.

The authors of this paper used

JMeter to compare the

performance of both the Service

Oriented Architecture (SAO)

and the microservices

architecture. Response time is

the amount of time it takes to

complete a specific business

request (BR) from start to

finish. Despite the fact that the

chosen architectures are

service-based, the

implementation style and

deployment environment are

completely different, and the

impact of cloud can be assessed

through load testing. Response

time for processing the request

is very fast in case of

Microservices architecture

compared to that of Service

Oriented architecture. Whereas,

the complexity of Microservices

architecture is higher than

Service Oriented Architecture.

Rao et al., 2023 Science Transactions ©

11

[2] Monolithic vs.

Microservice

Architecture: A

Performance and

Scalability

Evaluation

In this paper, the application

was implemented in four

different versions, covering two

different architectural styles

(monolithic vs. microservices).

The authors conducted a series

of controlled experiments in

three different deployment

environments (local, Azure

Spring Cloud, and Azure App

Service).

This paper concludes that for a

single machine the performance

of monolithic is better than its

microservice counterpart.

Microservice architecture is not

best suited for every context.

For basic, lightweight systems

that don't need to serve a lot of

concurrent users, monolithic

design appears to be a

preferable choice.

[3] A Comparative

Review of

Microservices and

Monolithic

Architectures

This article discusses the

outcomes of a development

environment called JHipster,

which was used to create online

apps using the Spring Boot and

Angular JS frameworks. In

order to compare the

performance of monolithic and

microservice architecture in

various situations and testing

setups, this study compares the

performance of these

architectures based on response

time and throughput.

Under normal application

traffic, microservices and

monolithic applications might

perform similarly. Because the

monolithic application can

handle requests more quickly, it

can be employed when the

developer specifically wants the

application to accept requests

more quickly. In concurrency

testing, monolithic architecture

outperformed microservices

design by 6% in terms of

throughput.

[4] The Comparison

of Microservice

and Monolithic

Architecture

In this paper, by sending a

number of HTTP GET and

POST queries, this study

analyzes the monolithic and

microservices architectures on

several aspects such as

architecture performance and

response time. This study also

discusses the advantages and

disadvantages of monolithic

and microservices

architectures.

Monolithic and microservices

architectures have advantages

and disadvantages. Load testing

has shown that the microservice

architecture is more efficient

when the application has to

process more requests. It has

many advantages that allow you

to create high-quality software

that is easy to scale, more

reliable, and cheaper to

maintain in the long term. A

monolithic architecture is more

efficient, has less overhead, and

is easy to extend.

From the above research it is clear that processing requests using a microservices architecture is

quicker than using a service-oriented design and monolithic architecture.. However, not every

situation calls for it. For simple, light-weight systems that don't need to support many

concurrent users, monolithic design is preferable. Monolithic architecture outperformed

microservices design in concurrency testing by 6% in terms of throughput. The microservice

architecture is more effective when the programme has to handle more requests, according to

load testing. There are benefits and drawbacks to both monolithic and microservices systems,

with monolithic architecture being more effective, having less overhead, and being simple to

extend.

Rao et al., 2023 Science Transactions ©

12

3. METHODOLOGY

To begin with the experiment, we first start with developing the e-commerce web application

using the monolithic architecture.

We developed three models: Customers, Products and Shopping. The Customers model contains

the schema of the customers, Products holds the schema of the products and Shopping holds the

schema of orders and the status of the orders. All the three models store their data in the same

database as various collections. After successful development, testing of the routes and database

is done using Postman by sending HTTP Requests to the various routes.

Figure 1. Monolithic Architecture

After developing the monolithic architecture, we migrate the web application to microservices

architecture.

Figure 2. Microservices Architecture

Here, the 3 models are converted into independent services, i.e. the Customer Service, Products

Service and Shopping Service. Each service has its own independent database to which it is

connected. One of the features of microservices architecture is the ability to communicate with

each other while also being independent, this was achieved by using RabbitMQ.

Rao et al., 2023 Science Transactions ©

13

4. IMPLEMENTATION

To compare the two architectures, two similar web applications have to be developed using the

same technologies. The two technologies used for developing the web application are NodeJS

and ExpressJS. For the database, we are using MongoDB Atlas as the NoSQL cloud database.

For testing, we are using Postman and for load testing and generating experimental results we

are using Apache JMeter.

The rationale for choosing this technology stack was based on the factors such as speed,

efficiency, scalability and flexibility. Additionally, the compatibility and supportability of this

technology stack with other tools used in the experiment were considered.

Node.js is an open-source, cross-platform, JavaScript runtime environment that executes

JavaScript code on the server-side. It allows developers to build fast, scalable, and efficient

server-side applications using JavaScript.

Express.js is a popular Node.js framework that makes it easier to build server-side web

applications. It provides a robust set of features for web and mobile applications, and simplifies

the process of building RESTful APIs and web applications. Furthermore, it provides features

like routing, middleware, templates, and more, and makes it easier for developers to build

scalable, robust, and maintainable server-side applications.

MongoDB Atlas is a fully-managed cloud database service developed by MongoDB Inc. It

provides a document-based database system with a flexible schema that can be easily integrated

into modern applications. It offers various features like automatic scaling, multi-cloud

deployment, 24/7 support, and backup and recovery. With MongoDB Atlas, users can host their

databases on cloud platforms such as Amazon Web Services (AWS), Google Cloud Platform

(GCP), and Microsoft Azure.

Postman is a popular API development and testing tool. It provides a platform for API

developers to send, test, and document API requests and responses. Postman allows users to

design and test APIs with ease, enabling efficient and seamless collaboration across teams.

Apache JMeter is a free and open source load testing tool that can be used to measure the

performance of various services, including web applications, databases, and APIs. It allows

users to simulate a heavy load on a server, network, or object to test its strength or to analyze

overall performance under different load types. JMeter can generate a large number of

concurrent users and send requests to the target system. The results can be analyzed and

visualized to identify performance bottlenecks and provide recommendations for improvement.

RabbitMQ is open-source message broker software that implements the Advanced Message

Queuing Protocol (AMQP). It allows for decoupled communication between applications by

storing messages in a queue and allowing consuming applications to process them as they

become available. RabbitMQ can handle high volume and high throughput of messages, and can

support multiple messaging patterns including publish/subscribe, request/reply, and message

routing.

All the services are connected to the Message Queue by the publish/subscribe messaging

pattern. Each service has its own queue and also listens to another queue. When one service

publishes its payload, the payload contains a binding key, according to the binding key the

exchanger sends the payload to the specific queue where the targeted service is listening. The

target service executes an event depending on the payload received. Also if the targeted service

goes offline for any reason, as soon as it comes back online, it receives the all payloads from the

Message Queue and quickly synchronizes itself with the other services. In this way, all the

independent services are able to communicate with each other.

As shown in the architecture above (Fig. 2.2), the microservices architecture requires an API

Gateway. The API Gateway forwards the HTTP Requests to the target service according to the

Rao et al., 2023 Science Transactions ©

14

path of the HTTP Request. For the API Gateway, we are using Nginx to harness its ability of

functioning as a reverse-proxy and its load balancing features.

Nginx is web server software that is widely used for web serving, reverse proxying, caching,

and load balancing. Nginx is known for its high performance, stability, and low resource

utilization, making it a popular choice for deploying high-traffic websites and applications. It

can handle a large number of concurrent connections and can serve static and dynamic content

efficiently. Nginx can also act as a reverse proxy, forwarding requests from clients to backend

servers, and as a load balancer, distributing incoming requests across multiple servers to

optimize resource utilization and increase availability.

Once the development is concluded, we can test the microservices architecture by using

Postman similar to any backend system. Another important characteristic of microservices

architecture is that each service runs on its own system or virtual machine. To maintain this

characteristic for testing purposes we are using Docker.

Docker is an open-source platform that automates the deployment of applications inside

containers. A container is a standalone executable package that includes everything needed to

run a piece of software, including the code, runtime, system tools, libraries, and settings.

Containers provide a consistent, reproducible, and isolated environment for applications,

making it easier to develop, test, and deploy software across different environments and

platforms.

For the load testing results, we are using Apache JMeter. In Apache JMeter, we are creating a

thread group. In the thread group, there are three threads which are given the different paths to

send a high number of HTTP Requests.

In monolithic architecture, we are sending requests to one database and accessing all the three

collections i.e. Customers, Products and Shopping.

In microservices architecture, we are sending all the HTTP Requests through the API Gateway,

the API Gateway routes the requests to all the three services depending on the path specified. As

each service has its own database, the requests are sent to all the three databases.

5. RESULTS

For better understanding of the architectures, we are conducting load testing experiments on

various amounts of HTTP Request samples starting from low to high. Load Testing was

performed on the system with following specifications:

• Processor - 11th Gen Intel(R) Core(TM) i7 @ 3.40GHz

• RAM - 16.0 GB

We selected commodity or standard computing resources in our test case, to mimic the

application’s performance under practical industrial settings. This may not correspond to the

precise outcomes, but it can offer significant insights for our analysis. The real outcomes after

employing high-end computing resources could exhibit improved response time, reduced CPU

utilization and enhanced results compared to our analysis.

5.1. Response Time Graph

Response time is the time taken by the request to reach the server and get a response from the

server. In the graph, the Y-axis represents the response time of each request in milliseconds and

the X-axis represents the HTTP Requests. In the experiment, we have configured 1000 virtual

users to transmit the HTTP requests.

5.1.1. 1st Run (10,000 samples)

5.1.1.1. Monolithic

Rao et al., 2023 Science Transactions ©

15

Figure 3. Monolithic Response Time Graph (1st Run)

5.1.1.2. Microservices

Figure 4. Microservice Response Time Graph (1st Run)

The 1st run shows the response-time graph for 10,000 samples. As it is evident in the graph, the

monolithic response-time graph is non-uniform compared to the microservices architecture.

However, the monolithic performs better compared to the later test runs with a higher number of

samples.

From the graph analysis, we infer that monolithic architecture suffers from a high response time

due to a bottleneck. To investigate this further, we decreased the traffic load on the monolithic

architecture and reduced the virtual users to 100. Consequently, we observed a significant

improvement in its performance compared to the previous graph.

5.1.2. 2nd Run (20,000 samples)

5.1.2.1. Monolithic

Rao et al., 2023 Science Transactions ©

16

Figure 5. Monolithic Response Time Graph (2nd Run)

5.1.2.2. Microservices

Figure 6. Microservice Response Time Graph (2nd Run)

The 2nd run shows the response-time graph of 20,000 samples. Compared to the previous

monolithic graph, the monolithic graph of the 2nd run has higher deviations. Whereas, the

microservice architecture graph is similar to the graph of the 1st run in spite of higher number

samples. Similar to the previous graph of the monolithic architecture, the 2nd run also exhibits a

bottleneck in the architecture resulting in high response time.

5.1.3. 3rd Run (30,000 samples)

5.1.3.1. Monolithic

Rao et al., 2023 Science Transactions ©

17

Figure 7. Monolithic Response Time Graph (3rd Run)

5.1.3.2. Microservices

Figure 8. Microservice Response Time Graph (3rd Run)

The 3rd run shows the response-time graph for 30,000 samples. Similar to the previous runs, the

monolithic architecture response-time graph continues to have a non-uniform pattern with

increasing number of samples which shows its inability to handle heavy traffic and the

microservices architecture’s response-time graph outperforms the monolithic architecture’s

response-time graph by depicting a uniform graph indicating its ability to handle heavy traffic.

To conclude, the monolithic architecture’s response-time graph provides unideal results as per

increasing number of samples. Hence, it is logical that for the lower number of samples the

monolithic architecture can give good results and can be sufficient for a web application having

a few hundred users simultaneously. For the microservices architecture, the graph appears to be

stable for all the tests, which indicates that microservices architecture is robust and can handle

high amounts of traffic and provide good results.

5.2. Summary Report

Rao et al., 2023 Science Transactions ©

18

Summary report provides insightful data for the performance testing. This report displays

average, minimum and maximum response time taken by the requests in milliseconds. “Std.

Dev.” row represents the deviation from the average value of response time. “Error %”

represents the percentage of failed requests throughout the test duration. It is calculated as (No.

of failed requests) / (Total No. of requests sent). Throughput row represents the number of

requests processed by the server per second.

Table 2. Comparative Summary Report (Monolithic vs Microservices)

Label
HTTP Request

(1st Run)

HTTP Request

(2nd Run)

HTTP Request

(3rd Run)

Samples 10000 20000 30000

 Monolithic Microservices Monolithic Microservices Monolithic Microservices

Average

(ms)
11370 9137 19400 9247 22186 10877

Min (ms) 1 40 1 40 1 40

Max (ms) 39031 31982 56766 29226 51053 35790

Std. Dev. 11607.23 10897.00 10918.31 12458.36 8377.75 134223.80

Error % 15.03% 9.00% 51.20% 4.73% 62.01% 3.13%

Throughput 86.8/sec 108.4/sec 51.3/sec 107.7/sec 45.0/sec 91.4/sec

Received

KB/sec
200.93 119.46 108.64 111.48 92.58 94.54

Sent

KB/sec
5.63 12.13 5.81 12.62 5.79 10.89

In the 1st run, it is clear that for 10,000 samples microservices provide better results and the

monolithic architecture results to have average performance.

The 2nd run has 20,000 samples. Compared to the previous run, the monolithic architecture

began to get worse with an increasing number of samples and the microservices architecture

gives approximately similar results.

The 3rd run has 30,000 samples. The monolithic architecture continues to worsen, whereas the

microservices architecture provides similar results showing its ability of handling high traffic

Table 3. Average Summary Report (Monolithic vs Microservices)

Label Average Reading

 Monolithic Microservices

Average (ms) 17652 9753.66

Min (ms) 1 40

Max (ms) 48950 32332.66

Std. Dev. 10301.09 12268.72

Error % 42.74 5.62

Throughput 61.03 102.5

From the average readings that are calculated and the results of the runs, we can conclude that

the monolithic architecture gives better results for lower numbers of samples and keeps

deteriorating as the number of samples goes on increasing. However, the microservices

architecture keeps on giving similar results for a high number of samples. This indicates that the

microservices architecture is robust and can balance heavy load which is ideal for handling

thousands of users simultaneously.

The graphs show strange emissions in the monolithic architecture and it was speculated that the

bottleneck in the monolithic architecture was caused by MongoDB rather than the monolithic

Rao et al., 2023 Science Transactions ©

19

application itself. However, after connecting all of the services to the same cluster used by the

monolithic architecture, the microservices response time graph remained unchanged. This

shows that, irrespective of MongoDB clusters or multiple MongoDB clusters used in the

microservices architecture, microservices architecture excels the monolithic architecture.

Figure 9. Microservice Response Time Graph using Single MongoDb Instance

Table 4. Microservices Summary Report using Single MongoDb Instance

Label HTTP Request

Samples 10000

Average (ms) 8051

Min (ms) 28

Max (ms) 26552

Std. Dev. 10397.31

Error % 8.97%

Throughput 123.0/sec

Received KB/sec 253.84

Sent KB/sec 13.78

To conclude, a decision should be made according to the e-commerce business. The test cases

are designed for generic ecommerce web applications and do not account for any specific

scenario. Moreover, the analysis and test cases may differ depending on the computing

resources and hardware used. The cases are as follows:

1. If you have a small business and are having a network traffic of a few hundred users

simultaneously, a backend server with monolithic architecture should suffice. This will help

you to have low cost and maintenance for the e-commerce business and will also help your

business sustain.

2. If you are a small business but are having or expecting to have high network traffic, you

need an architecture which will help you scale easily and quickly. In that case, the

microservices architecture will help you to scale your systems, allow you to make updates

and also help your business to avoid loss of customers and will help your business.

Combined with the services provided by various cloud platforms such as AWS, Microsoft

Azure, Google Cloud Platform, your business will have a very robust and efficient e-

commerce web application. If you are already having an existing system, you might have to

consider migrating to the microservices architecture.

Rao et al., 2023 Science Transactions ©

20

3. If you are having big business and consider having a web application which is expected to

have low traffic or developing a web application for your organization for a limited

geographical region such as a country, you can develop a simple backend system having the

monolithic architecture. This will be sufficient for your application and you can also save

money because of easy development, low system specification and low maintenance cost.

4. If you are having a big business and also having heavy traffic on your e-commerce web

application such as a worldwide business or you are developing a web application for your

organization and the employees from all around the world are accessing it, you should

develop a system having the microservices architecture. Considering this scenario, coupling

the microservices architecture with Kubernetes and other services provided by various cloud

platforms such as AWS, Microsoft Azure, Google Cloud Platform, will be a great

investment for the business.

6. CONCLUSION

Monolithic architecture and microservices architecture both have their pros and cons. In the

research paper, we have explained the architecture, implementation, methodology, as well as the

results and findings in detail. Based on these findings, we can say that the project stakeholder

has to make an appropriate choice of architecture pattern based on the unique needs of the

project. To assist with these choices, we have explained the various cases and the

recommendation approach for that case respectively.

As it is evident that the monolithic architecture satisfies the basic requirements of a backend

server compared to the microservices architecture that is complicated to develop, however, the

microservices services gives better response time and low rate of errors during heavy traffic on

the backend server. The Monolithic architecture results in having low minimum latency but also

has a very high maximum latency during heavy traffic. The microservices architecture has a

higher minimum latency compared to monolithic architecture, but can handle heavy traffic with

ease. Considering the cost, the complicated architecture of the microservices architecture along

with its communication, configuration and multiple devices/virtual machines makes it more

expensive than the monolithic architecture.

Due to the rapid growth of information and technologies, it has led to exponential growth of not

only industries, companies and organizations but also a massive number of users. To handle this

growth, we need robust and high performance systems to keep up. This brought about the

development of various distributed systems such as the microservices architecture in web

application development. Despite all the benefits and drawbacks it has brought with it, there is

still a tremendous amount of room for improvement. The microservices architecture needs

technical innovations to give solutions to problems such as network complexity, security issues,

etc.

REFERENCES

[1] Raj, V. and Sadam, R. (2021) ‘Performance and complexity comparison of service oriented

architecture and microservices architecture’, Int. J. Communication Networks and Distributed Systems,

Vol. 27, No. 1, pp.100–117

[2] G. Blinowski, A. Ojdowska and A. Przybyłek, "Monolithic vs. Microservice Architecture: A

Performance and Scalability Evaluation," in IEEE Access, vol. 10, pp. 20357-20374, 2022, doi:

10.1109/ACCESS.2022.3152803

[3] O. Al-Debagy and P. Martinek, "A Comparative Review of Microservices and Monolithic

Architectures," 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics

(CINTI), 2018, pp. 000149-000154, doi: 10.1109/CINTI.2018.8928192.

Rao et al., 2023 Science Transactions ©

21

[4] K. Gos and W. Zabierowski, "The Comparison of Microservice and Monolithic Architecture," 2020

IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design

(MEMSTECH), 2020, pp. 150-153, doi: 10.1109/MEMSTECH49584.2020.9109514.

[5] D. Kuryazov, D. Jabborov and B. Khujamuratov, "Towards Decomposing Monolithic Applications

into Microservices," 2020 IEEE 14th International Conference on Application of Information and

Communication Technologies (AICT), 2020, pp. 1-4, doi: 10.1109/AICT50176.2020.9368571.

[6] F. Ponce, G. Márquez and H. Astudillo, "Migrating from monolithic architecture to microservices: A

Rapid Review," 2019 38th International Conference of the Chilean Computer Science Society (SCCC),

2019, pp. 1-7, doi: 10.1109/SCCC49216.2019.8966423.

[7] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou and Z. Li, "Microservices: architecture, container, and

challenges," 2020 IEEE 20th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), 2020, pp. 629-635, doi: 10.1109/QRS-C51114.2020.00107

.

[8] Bogner J, Fritzsch J, Wagner S, Zimmermann A (2019) Assuring the evolvability of microservices:

insights into industry practices and challenges. In: Proceedings of the 2019 IEEE international conference

on software maintenance and evolution (ICSME), pp 546–556

[9] Fritzsch J, Bogner J, Wagner S, Zimmermann A (2019) Microservices migration in industry:

intentions, strategies, and challenges. In: Proceedings of the 2019 IEEE international conference on

software maintenance and evolution (ICSME), pp 481–490

[10] Balalaie, A., Heydarnoori, A. and Jamshidi, P. (2016) ‘Microservices architecture enables devops:

migration to a cloud-native architecture’, IEEE Software, 18 March, Vol. 33, No. 3, pp.42–52.

[11] R. Chen, S. Li, and Z. Li, “From Monolith to Microservices: A Dataflow-Driven Approach,” in 2017

24th Asia-Pacific Software Engineering Conference (APSEC), 2017, pp. 466–475.

[12] L. Carvalho, A. Garcia, W. K. G. Assunç ao, R. de Mello, and M. J. de Lima, “Analysis of the

criteria adopted in industry to extract microservices,’’ in Proc. Joint 7th Int. Workshop Conducting

Empirical Stud. Ind., 2019, pp. 22-29.

[13] J. Jaworski, W. Karwowski, and M. Rusek, “Microservice-based cloud application ported to

unikernels: Performance comparison of different technologies,” in Proc. 40th Anniversary Int. Conf. Inf.

Syst. Archit. Technol., L. Borzemski, J. wi¡tek, and Z. Wilimowska, Eds. Cham, Switzerland: Springer,

2019, pp. 255-264.

[14] M. Jagieªªo, M. Rusek, and W. Karwowski, “Performance and resilience to failures of an cloud-based

application: Monolithic and microservices based architectures compared,” in Computer Information

Systems and Industrial Management, K. Saeed, R. Chaki, and V. Janev, Eds. Cham, Switzerland:

Springer, 2019, pp. 445-456.

[15] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di Salle, “Towards

recovering the software architecture of microservice-based systems,” in Proc. IEEE Int. Conf. Softw.

Archit.Workshops (ICSAW), Apr. 2017, pp. 4653.

