
Science Transactions © 2024 International Journal of Advances in

Soft Computing and Intelligent Systems (IJASCIS)

2024, Vol 03, Issue 02, 313-323 Original Paper

ISSN: 3048-4987

313

PERFORMANCE EVALUATION OF SDN

CONTROLLERS: ANALYSING THE TCP TRAFFIC

MANAGEMENT IN POX, RYU, AND ODL

Shanu Bhardwaja,*, Shailender Kumarb

Ashish Girdharc

a,bDepartment of Computer Science and Engineering, Delhi Technological University,

Delhi, India, shanubhardwaj1@gmail.com
cDepartment of Computer Science and Applications, Kurukshetra University,

Kurukshetra, India,

ABSTRACT

Software-defined networking (SDN) is a transformative paradigm in the networking field that isolates the

data plane and the control plane. The controller is one of the main entities in SDN that controls the flow

of information in the network. Therefore, the research deals with a thorough performance differentiation

of three prominent SDN controllers named POX, Ryu, and OpenDaylight (ODL). The study aims to

evaluate the effectiveness of these controllers in controlling the traffic of the network, by focusing on

performance parameters such as Transmission Control Protocol (TCP) mean, packet loss, as well as jitter.

The experimental setup employed Mininet, a network emulator, to create a consistent virtual network

environment for all controllers. Each controller was tested in isolated virtual machines, ensuring

controlled and unbiased results.

The experimental results reveal distinct performance differences among the controllers. In the research

experimentations, the highest TCP mean throughput, as well as superior performance among all

controllers, is achieved by ODL consistently and exhibiting minimum loss of the data packets and jitter

across all-time instances for high-demand, large-scale networks. This study demonstrates the crucial role

of choosing the appropriate SDN controller based on specific network requirements, guiding network

administrators and researchers in making informed decisions to ensure optimal network performance.

KEYWORDS

Software-defined networking, SDN controllers, Traffic analysis, TCP traffic management

1. INTRODUCTION

SDN is an extraordinary methodology in the field of the network that isolates the control plane

from the physical plane, working by bringing together control and dynamic organization setup.

The control and data planes are tightly coupled within individual devices, making traditional

networks frequently rigid and complicated [1]. SDN defeats these restrictions by decoupling

these planes, empowering incorporated network knowledge, working on administration, and

upgrading adaptability. A global view of the network is made possible by this centralized

architecture as shown in Fig. 1, which also speeds up the deployment of new services and

applications, improves performance, and maximizes resource utilization [2].

Among the different SDN controllers accessible, Ryu, POX, and ODL are the absolute most

broadly utilized regulators. Every one of these controllers offers novel elements and abilities,

taking care of various use cases and necessities. Understanding the distinctions and genuine

Bhardwaj et al. 2024 Science Transactions ©

314

uses of these controllers is fundamental for choosing the most proper answer for explicit

systems administration needs [3]. Firstly, Ryu is an open-source SDN controller that is

renowned for its simplicity, adaptability, and user-friendliness [4]. It supports various protocols,

including OpenFlow, which is the standard for SDN communication between the control and

data planes. Also, POX is another open-source SDN controller that has been instrumental in

SDN examination and experimentation. It is intended to be lightweight and straightforward,

making it a superb decision for learning and exploring different avenues regarding SDN ideas.

Last but not least, the Linux Foundation supported the development of ODL, an open-source,

scalable SDN controller. It plans to speed up the reception of SDN and NFV through a

cooperative and straightforward improvement process. Additionally, traffic examination is vital

in SDN controllers because of multiple factors, all of which add to the compelling

administration and improvement of organization execution [5].

SDN controllers give a unified perspective on the whole network, empowering continuous

observation and investigation of information traffic. Network administrators can dynamically

optimize traffic flows, identify congestion points, and spot anomalies by utilizing this

centralized control [6]. The capacity to program the organization through SDN controllers takes

into account robotized traffic designing, further developing general organization proficiency and

execution. Moreover, SDN works with the execution of cutting-edge safety efforts by

empowering granular command over traffic streams and fast reaction to expected dangers. SDN

controllers are a powerful tool for modern traffic analysis because of these capabilities, which

improve end-user quality of service, reduce operational costs, and increase network reliability

[7].

These controllers are put to use in a variety of situations to boost network agility, security, and

efficiency. Because of its ease of use and capacity for rapid development, Ryu is frequently

used in networks ranging from small to medium in size. POX is habitually utilized in instructive

establishments and exploration labs to educate and investigate SDN ideas. Large-scale

deployments in telecommunications and enterprise environments favor ODL due to its

scalability and extensive feature set [8]. The significance of selecting the appropriate controller

based on the requirements and goals of the network is emphasized by the fact that each

controller has distinct advantages that make it suitable for particular applications.

Figure 1. SDN Architecture

Bhardwaj et al. 2024 Science Transactions ©

315

In this paper, the author presents a comparison of SDN controllers named Ryu, POX, and ODL.

For this comparison, several performance parameters have been used, such as control response

time, data flow efficiency, and network latency. Based on the results obtained from simulations,

the author concludes which SDN controller is the best for traffic analysis. This study highlights

the strengths and weaknesses of each controller based on different performance metrics,

providing valuable insights into their effectiveness and suitability for network management and

optimization.

2. BACKGROUND

This section highlights the distinct development histories and primary use cases of the SDN

controllers.

2.1. Traditional Networking vs SDN

In conventional networks, traffic analysis is in many cases obliged by the decentralized idea of

the network design, where control and information planes are implanted inside individual

gadgets. Network managers should assemble information from various sources, which can be

tedious and inclined to irregularities [9]. When analyzing traffic patterns or diagnosing issues,

this decentralized approach frequently results in limited visibility and slower response times.

SDNs, on the other hand, provide a centralized method for traffic analysis that gives a software-

based controller access to the entire network. Anomalies can be detected, performance can be

improved, and security policies can be enforced with ease thanks to this centralization, which

makes it possible to monitor traffic flows in real time. SDNs' programmability also makes it

easier to use cutting-edge analytics and machine learning algorithms, giving traffic management

administrators greater insight and control [10]. As a result, SDNs make traffic analysis more

accurate and efficient, allowing for quicker and more efficient responses to network conditions

and potential threats.

Table 1. Properties of the SDN controllers.

Features RYU POX ODL

Language Support Python Python Java

Platform Support Linux, Windows Linux Linux

Structure Lightweight Lightweight Extensible

Virtualization Mininet Mininet Mininet

Northbound API REST etc. RPC etc. REST etc.

Southbound API OpenFlow, BGP, etc. OpenFlow OpenFlow,

NETCONF, etc.

Documentation Good Basic Extensive

Scalability Small scale Small scale Large scale

Modularity Basic Basic High

2.2. Ryu controller

Ryu is a well-known open-source SDN controller that is known for being simple, adaptable, and

simple to use. OpenFlow, the standard for SDN communication between the control and data

planes, is one of the protocols that it supports as depicted in Fig. 2. Ryu gives a far-reaching set

of libraries and instruments that work with the fast turn of events and sending of organization

applications [11]. It is broadly utilized in scholarly examination and little to medium-sized

creation conditions because of its direct engineering and broad documentation. Traffic

engineering, network automation, and security monitoring are some of Ryu's real-time

applications, making it an adaptable option for a variety of network scenarios.

Bhardwaj et al. 2024 Science Transactions ©

316

Figure 2. Architecture of Ryu SDN controller

2.3. POX controller

POX is another open-source SDN controller that has been instrumental in SDN examination and

training [12]. It is intended to be lightweight and straightforward, making it a superb decision

for learning and exploring different avenues regarding SDN ideas as shown in Fig. 3. POX's

simplicity makes it a useful tool for developing and evaluating new SDN applications, even

though it may lack the same level of sophistication and scalability as Ryu or ODL, also shown

in table 1. POX is frequently utilized in experimental setups to validate novel networking

concepts and in academic settings to teach SDN principles in real-world scenarios [13].

Figure 3. Architecture of POX SDN controller

2.4. ODL controller

ODL is a vigorous and versatile open-source SDN controller created under the Linux

Establishment. Through a development process that is open and collaborative, it aims to

Bhardwaj et al. 2024 Science Transactions ©

317

accelerate the use of SDN and NFV. OpenFlow, NETCONF, and BGP are just a few of the

many southbound protocols that ODL can handle, making it ideal for large-scale production

environments. Its modular design makes it easy to customize and integrate with a variety of

network management tools [14]. ODL is broadly utilized in broadcast communications, server

farms, and undertaking networks for errands like organization virtualization, administration

coordination, and high-level network analytics [15]. Fig. 4 depicts the architecture of the ODL

controller in the SDN environment.

Figure 4. Architecture of ODL SDN controller

3. METHODOLOGY

To implement Ryu, POX, and ODL controllers for traffic analysis in an SDN environment, the

first step involves ensuring that the servers or virtual machines being used have adequate

resources and a compatible operating system, such as Ubuntu. Designing an appropriate

network topology is crucial for effective traffic analysis, and this has been achieved using

network emulation tools like Mininet to create virtual networks suitable for testing. The flow of

the implementation of the proposed research work is depicted in Fig. 5 and Table 2.

The next step is the installation of the SDN controllers. For the Ryu controller, dependencies

such as Python3 and related packages have been installed. Ryu itself can be installed

using Python's package installer (pip). In a similar vein, cloning the POX repository and

installing the POX controller requires Python 2.7 and pip. Beginning POX is direct with

a basic order to start the controller. ODL, being more complex, includes downloading

the ODL conveyance from the authority site, extracting the documents, and beginning

the ODL utilizing the Karaf compartment. This setup guarantees that each of the three

controllers is prepared for design and combination.

Each controller's traffic monitoring applications or components must be set up when the

controllers are configured for traffic analysis. For Ryu, existing applications, for

example, simple_monitor_13.py can be utilized, which has begun through the Ryu

manager. On account of POX, traffic examination parts can be incorporated into the

POX environment by beginning POX with these particular parts. ODL requires the

establishment of elements like old-l2switch-switch, which work with traffic

investigation. Sending traffic-checking applications inside ODL includes utilizing the
Karaf climate to successfully deal with these highlights.

Bhardwaj et al. 2024 Science Transactions ©

318

Coordinating the controllers with the network is the last step, where devices like Mininet

assume a vital part. It is essential to install Mininet and construct a network topology

that is capable of communicating with the SDN controllers. For this network to be

managed and monitored, each controller must be configured. For instance, Mininet can

begin with a predefined geography that interfaces with the SDN controllers,

empowering them to accumulate traffic information and perform examinations. This

integration takes into consideration ongoing traffic observing, anomaly detection, and

execution improvement across the network, utilizing the abilities of Ryu, POX, and

ODL.

Table 2. Steps of the implementation.

Steps to be followed Implementation

Setting up the environment • Hardware and software requirements

• Network topology

Installing SDN controllers • Ryu controller

i. Install dependencies

ii. Install Ryu

• POX controller

i. Install dependencies

ii. Install POX

• ODLcontroller

i. Download ODL distribution

ii. Extract the file

tar –xvf distribution-karaf-x.x.x.tar.gz

iii. Start ODL

cd distribution-karaf-x.x.x./bin/karaf

Configuring the controllers

for traffic analysis
• Ryu controller

i. Develop or use existing Ryu applications for

traffic analysis.

ii. Start application ryu-

managerpath/to/your/application.py

• POX controller

i. Create or use existing POX components for

traffic analysis.

ii. Start POX with the traffic analysis.

• ODL controller

i. Install necessary features for traffic analysis.

ii. Develop or use existing ODL applications

for traffic monitoring.

iii. Deploy the application in the ODL

environment using Karaf.

Integrating the controllers

with the network
• Mininet setup

i. Installation

ii. Network Topology

Traffic analysis • Data collection

• Real-time monitoring

Bhardwaj et al. 2024 Science Transactions ©

319

Figure 5. Implementation flow of the proposed SDN setup.

4. RESULTS AND DISCUSSION

The results and discussion section of this research work delves into the comparative analysis of

three prominent SDN controllers—Ryu, POX, and ODL, focusing on their implementation and

efficacy in traffic analysis. The study begins with the successful installation and configuration

of each controller within a Mininet virtual network environment, followed by an evaluation of

their traffic monitoring capabilities. Key performance metrics such as latency, scalability, and

ease of integration are examined to understand the practical implications of each controller.

4.1. TCP mean

In TCP mean [16], we used a methodical approach that included environment setup, traffic

generation, and mean estimation to precisely examine how well the POX, Ryu, and ODL

controllers handled TCP traffic within an SDN. This method ensures that we have methodically

evaluated and differentiated each controller's traffic analysis capabilities.

The TCP was used to measure POX, Ryu, and ODL at time instances of 30 seconds, 20

seconds, and 10 seconds, respectively, for evaluation as shown in Fig. 6. The TCP mean is

compared to various time instances in the table. For each time interval, the performance of the

controllers is recorded. At the 30-second mark, ODL shows the highest throughput, followed by

Ryu. At 20 seconds, ODL's throughput decreases, while Ryu and POX register 26.6 and 25.05,

respectively. At 10 seconds, ODL maintains a high throughput of 32.49, Ryu peaks at 29.4, and

POX records 23.6. These results suggest that ODL consistently outperforms the other

controllers in terms of mean TCP throughput across all time intervals, while Ryu and POX

show variable performance with Ryu generally performing better than POX.

Bhardwaj et al. 2024 Science Transactions ©

320

Figure 6. TCP means of POX, Ryu, and ODL controller.

4.2. Jitter and Packet loss

The bar graph illustrates packet loss percentages and jitter values (in milliseconds) for three

SDN controllers POX, Ryu, and ODL, at three different time intervals: 10 seconds, 20 seconds,

and 30 seconds as shown in Fig. 7.

At 10 seconds, POX exhibits the highest packet loss, followed by Ryu with a noticeable

amount, and ODL with minimal packet loss. POX shows the highest jitter, while Ryu and ODL

have significantly lower jitter values. At 20 seconds, Packet Loss: POX continues to have the

highest packet loss, with Ryu showing moderate packet loss, and ODL maintaining a low packet

loss rate. POX has the highest jitter once again, while Ryu and ODL show very low jitter. At 30

seconds, POX remains with the highest packet loss, Ryu has moderate packet loss, and ODL

displays the least packet loss. POX still has the highest jitter, with Ryu showing less, and ODL

having minimal jitter.

Fig. 8 provides an overview of network performance metrics specifically jitter and packet loss

across different network controllers named POX, Ryu, and ODL at various bandwidths such as

500 Mbps, 600 Mbps, 700 Mbps, and 800 Mbps. Jitter measures the variability in packet arrival

times, while packet loss represents the percentage of lost data packets. Among the controllers, Ryu

demonstrates the best performance overall, with the lowest jitter and packet loss across most

bandwidths, particularly excelling at 700 Mbps with minimal packet loss. ODL also shows strong

performance but with slightly higher jitter compared to Ryu, especially at higher bandwidths.

POX, while consistent in jitter, exhibits higher packet loss relative to Ryu and ODL. This

indicates that Ryu is the most efficient in terms of both consistency and reliability of data

transmission, while ODL performs well but with a bit more variability, and POX shows some

limitations in maintaining low packet loss.

Bhardwaj et al. 2024 Science Transactions ©

321

Figure 7. Jitter and packet loss of the SDN controllers in distinct time instances.

Figure 8. Jitter and packet loss of the SDN controllers in distinct bandwidth.

Bhardwaj et al. 2024 Science Transactions ©

322

5. CONCLUSION

The comparative analysis of the SDN controllers POX, Ryu, and ODL, revealed significant

performance differences in terms of TCP throughput, packet loss, and jitter. ODL consistently

outperformed the others, demonstrating the highest mean TCP throughput, minimal packet loss,

and the lowest jitter, making it ideal for large-scale, high-performance networks. Ryu showed

moderate performance, surpassing POX but not matching ODL, indicating its suitability for

medium-sized networks that require a balance between ease of use and performance. POX, with

the lowest throughput and highest packet loss and jitter, is best suited for smaller networks,

educational purposes, and experimental setups where simplicity is prioritized. This research

underscores the critical role of choosing the appropriate SDN controller to ensure optimal

network performance and reliability, tailored to specific network requirements and operational

contexts.

Disclosure of Interests. The author has no competing interests to declare that are relevant to the

content of this article.

REFERENCES.

[1] Chahal, J. K., Bhandari, A., & Behal, S. (2024). DDoS attacks & defense mechanisms in SDN-

enabled cloud: Taxonomy, review and research challenges. Computer Science Review, 53, 100644.

[2] Abdi, A. H., Audah, L., Salh, A., Alhartomi, M. A., Rasheed, H., Ahmed, S., & Tahir, A. (2024).

Security Control and Data Planes of SDN: A Comprehensive Review of Traditional, AI and MTD

Approaches to Security Solutions. IEEE Access.

[3] Bhardwaj, S., & Girdhar, A. (2023). Network traffic analysis in software-defined networking

using ryu controller. Wireless Personal Communications, 132(3), 1797-1818.

[4] Bhardwaj, S., & Girdhar, A. (2021, November). Software-defined networking: A traffic

engineering approach. In 2021 IEEE 8th Uttar Pradesh Section International Conference on

Electrical, Electronics and Computer Engineering (UPCON) (pp. 1-5). IEEE.

[5] Adanza, D., Gifre, L., Alemany, P., Fernández-Palacios, J. P., González-de-Dios, O., Muñoz, R.,

& Vilalta, R. (2024). Enabling traffic forecasting with cloud-native SDN controller in transport

networks. Computer Networks, 250, 110565.

[6] Shirmarz, A., & Ghaffari, A. (2020). Performance issues and solutions in SDN-based data

center: a survey. The Journal of Supercomputing, 76(10), 7545-7593.

[7] Bhardwaj, S., Panda, S. N., & Datta, P. (2020, December). Layer-Based Attacks in the Ternary

Planes of Software-Defined Networking. In 2020 IEEE International Women in Engineering (WIE)

Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 292-295). IEEE.

[8] Maleh, Y., Qasmaoui, Y., El Gholami, K., Sadqi, Y., & Mounir, S. (2023). A comprehensive

survey on SDN security: threats, mitigations, and future directions. Journal of Reliable Intelligent

Environments, 9(2), 201-239.

[9] Indrason, N., & Saha, G. (2024). Exploring Blockchain-driven security in SDN-based IoT

networks. Journal of Network and Computer Applications, 103838.

[10] Jiang, W., Han, H., He, M., & Gu, W. (2024). ML-based pre-deployment SDN

performance prediction with neural network boosting regression. Expert Systems with

Applications, 241, 122774.

Bhardwaj et al. 2024 Science Transactions ©

323

[11] Bhardwaj, S., & Panda, S. N. (2022). Performance evaluation using RYU SDN

controller in software-defined networking environment. Wireless Personal Communications, 122(1),

701-723.

[12] Cabarkapa, D., & Rancic, D. (2021). Performance Analysis of Ryu-POX Controller in

Different Tree-Based SDN Topologies. Advances in Electrical & Computer Engineering, 21(3).

[13] Rizaldi, M. I., Yusuf, E. A. S., Akbi, D. R., & Suharso, W. (2024). A Comparison of

Ryu and Pox Controllers: A Parallel Implementation. Jurnal Online Informatika, 9(1), 1-9.

[14] Hassen, H., & Meherzi, S. (2024). Performance evaluation of centralised and

distributed controllers in software defined networks. International Journal of Wireless and Mobile

Computing, 27(2), 103-117.

[15] Singh, A., Kaur, N., & Kaur, H. (2022). Extensive performance analysis of

OpenDayLight (ODL) and open network operating system (ONOS) SDN

controllers. Microprocessors and Microsystems, 95, 104715.

[16] Adhikari, T., Kumar Khan, A., & Kule, M. (2024). ProDetect: A Proactive Detection

Approach of the TCP SYN Flooding Attack in the SDN Controller. IETE Journal of Education, 1-12.

Authors

Shanu

Bhardwaj is

currently

pursuing PhD

in Department

of Computer

Science &

Engineering at

Delhi

Technological

University, Delhi, India. She has completed her

B. Tech in Computer Science and Engineering

at Kurukshetra University, Kurukshetra (India)

and M.E. at Chitkara University, Punjab (India).

Her research areas are Software-Defined

Networking (SDN), Internet of Things (IoT),

Wireless sensor network (WSN) and Network

security. She has completed her internship on

“Application of Big Data in Construction Law”

from Tamkang University, Taiwan.

 Prof. Shailender

Kumar is currently working as Professor in

Department of Computer Science &

Engineering at Delhi Technological University

since December 2018. He has total of more than

17 years of Teaching Experience. He has 20

SCI/SCIE and other publications. His major

area of research are Network Security,

Computer Networks, Database Management

Systems and Machine Learning.

Dr. Ashish

Girdhar is

currently

working as

Assistant

Professor in

Department of

Computer

Science &

Applications

at Kurukshetra University since 2022. He has

total of more than 12 years of Teaching

Experience. He has done his PhD in area of

Image Processing from Thapar Institute of

Engineering and Technology, Patiala. He has 7

SCI/SCIE Publications and few other

publications. His major area of research are

Image Processing and Machine Learning.

