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ABSTRACT 

The importance of software maintenance in safety-critical applications, such as automotive and aerospace 

systems, cannot be overstated. Safety-critical systems are those whose failure could result in loss of life, 

significant property damage, or environmental harm. Examples include aircraft, cars, medical devices, and 

nuclear power plants. Regular software maintenance is crucial to ensure these systems remain secure and 

protected against vulnerabilities. Updates address security flaws, patch known exploits, and enhance 

security protocols to guard against emerging threats. This paper provides an overview of the essential role 

of software maintenance in safety-critical systems, highlighting the necessity of prompt security updates, 

the challenges posed by cyber threats, and the importance of maintaining a secure software environment. It 

also discusses the specific challenges faced in the automotive and aerospace industries, current practices 

and approaches, and emerging trends in software maintenance. The paper concludes with a comparative 

analysis of the maintenance practices across these domains, emphasizing the commonalities and 

differences, and outlines future research directions to further enhance the safety and reliability of software 

in these critical applications. 
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1. INTRODUCTION 

1.1. Background 

The criticality of software maintenance in safety-critical domains such as automotive and 

aerospace cannot be understated. Safety-critical systems, including aircraft, cars, medical devices, 

and nuclear power plants, are systems whose failure could result in loss of life, significant 

property damage, or environmental damage [4]. These systems rely heavily on software to 

perform essential functions, and the integrity of this software is paramount to ensuring overall 

system safety. 

The challenges of integrating agile methodologies into the development of safety-critical systems 

are significant. Large-scale agile frameworks such as SAFe (Scaled Agile Framework) and LeSS 

(Large Scale Scrum) have been widely adopted in the automotive industry to enhance productivity 

and flexibility. However, these frameworks must be carefully adapted to incorporate rigorous 

safety practices [19]. This adaptation [10] is crucial as the automotive industry faces increasing 

software complexity, with premium cars now containing over ten million lines of code [19]. 

Incident reporting systems are crucial for maintaining safety in safety-critical applications. 

However, existing systems, often relying on relational databases, face problems such as data 

elicitation bias, precision and recall issues, data abstraction challenges, and inter-analyst 

reliability [1]. To address these challenges, solutions like computer-assisted interviewing, free-

text retrieval and probabilistic inference, and conversational case-based reasoning have been 

proposed [1]. 
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The importance of extending quality [6] assurance techniques to software development in safety-

critical domains is another focal point. The paper discusses the unique challenges faced in these 

environments and emphasizes the need for robust quality assurance practices to ensure software 

safety and security. This is particularly relevant in the context of the automotive industry, where 

software drives innovation and enables new features [19]. 

The paper also reviews various safety-critical applications across automotive, aerospace, and 

other domains. The increasing prevalence of software-defined vehicles (SDV) is transforming the 

automotive industry from technology, products, services, and enterprise competition perspectives 

[21]. In the aerospace sector, the shift from time-based to condition-based maintenance [31], 

driven by advancements in sensor technology, necessitates sophisticated data analysis techniques, 

with deep learning emerging as a promising solution [21]. 

1.2. Objectives and scope 

The primary objective of this paper is to provide a comprehensive overview of software 

maintenance in safety-critical applications, with a particular focus on the automotive and 

aerospace industries. The survey aims to highlight the importance of regular software 

maintenance, identify common challenges, and discuss current practices and emerging trends. 

The scope of this paper includes an examination of various types of maintenance, the specific 

challenges faced in the automotive and aerospace sectors, and a comparative analysis of 

maintenance practices across these domains. 

1.2. Structure of the paper 

In this paper, section 2 defines software maintenance and discusses its importance in safety-

critical applications, outlining different types of maintenance activities. Section 3 provides an in-

depth look at the automotive industry's software systems, maintenance challenges, current 

practices, and tools, including the impact of software-defined vehicles [21]. Section 4 focuses on 

the aerospace industry, exploring the challenges of developing software for aerospace systems 

[24] and the application of artificial intelligence in aerospace maintenance [27, 28]. Section 5 

offers a comparative analysis of maintenance practices across the automotive and aerospace 

domains, highlighting both commonalities and domain-specific differences. Section 6 explores 

emerging trends and future directions in software maintenance, including the role of automation, 

AI, and predictive maintenance [14, 29]. Section 7 concludes the paper with a summary of key 

findings and final thoughts on the importance of software maintenance in safety-critical 

applications. 

2. SOFTWARE MAINTENANCE IN SAFETY-CRITICAL APPLICATIONS 

2.1. Definition and importance 

Software maintenance, defined as the modification of a software product after delivery [7], is 

essential for correcting faults, enhancing performance, adapting to changing environments, and 

ensuring continued user satisfaction [8]. This involves rectifying bugs, integrating new features, 

and ensuring compatibility with evolving hardware and software ecosystems [7]. In safety-critical 

domains like automotive and aerospace, where software increasingly underpins crucial 

functionalities, the reliability and precision of this software are paramount to overall system safety 

[1, 2, 3, 4, 5]. 

Recent research underscores several key aspects of software maintenance in these high-stakes 

environments: 

• Functional safety standards and fail-safe designs are non-negotiable for guaranteeing 

system integrity [2, 5]. 
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• Developing comprehensive, clear, and verifiable requirements specifications is a major 

challenge, demanding sustained stakeholder alignment throughout the system's lifespan 

[3, 24]. 

• While software unlocks complex functionalities and mitigates certain risks, it can 

introduce new hazards if not rigorously maintained and updated [1, 4] 

• The increasing software-intensity of modern systems in these sectors amplifies the 

criticality of effective software maintenance. This is particularly crucial given the 

potential for substantial financial repercussions or even loss of life in case of system 

failures [5, 23]. 

 

2.2. Types of Maintenance 

2.2.1. Corrective Maintenance 

Corrective maintenance [30], a reactive approach to rectifying identified software problems after 

deployment, is indispensable for upholding the reliability and integrity of safety-critical software 

systems in the automotive and aerospace industries [7]. Studies reveal that software maintenance 

constitutes a significant portion, often 60-90%, of the total cost of ownership for an application 

[8]. The IEEE standards classify software maintenance into four primary categories, with 

corrective maintenance being one of them, supported by a range of techniques, methodologies, 

and tools [7]. Research indicates that a substantial portion of maintenance efforts, approximately 

75%, is dedicated to adaptive and perfective maintenance [12], encompassing corrective actions 

[8]. Therefore, developing robust maintenance models that minimize rework expenses and 

enhance customer satisfaction is paramount, especially in domains where software failures carry 

severe consequences [7]. 

2.2.2. Adaptive Maintenance 

Adaptive maintenance ensures software applications remain compatible and functional within 

evolving environments. This encompasses adapting to hardware updates, operating system 

changes, software dependency modifications, and evolving regulatory requirements [9]. This 

form of maintenance focuses on modifying software post-deployment to align with these changes, 

ensuring its continued usability and effectiveness [9]. Automating adaptive maintenance tasks 

enhances efficiency in managing the evolution of software systems, often utilizing high-level 

specifications to synthesize specialized code for this purpose [9]. 

2.2.3. Perfective Maintenance 

Perfective maintenance [12] focuses on enhancing software quality by improving performance, 

maintainability, and overall robustness. This includes increasing efficiency, reliability, and 

adaptability to future modifications [11]. Research suggests that a considerable amount of 

development time and resources, up to 70%, is allocated to maintenance, underlining the need for 

effective maintenance models that prioritize software quality and customer satisfaction [7]. 

Techniques like visual analysis can be employed to pinpoint areas for improvement and optimize 

code quality during perfective maintenance, ultimately minimizing future costs and simplifying 

adaptations in complex software systems [11]. 

2.2.4. Preventative Maintenance 

Preventive maintenance adopts a proactive stance, involving targeted software modifications to 

detect and address potential faults before they escalate into actual errors [13]. This approach aims 

to mitigate software failure risks, minimize downtime, and ensure the reliability and performance 

of critical systems [13]. Organizations can reduce planned downtime, enhance equipment 

reliability, and optimize system performance by implementing effective preventive maintenance 

strategies and scheduling [13]. A well-structured preventive maintenance program is essential in 
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safety-critical domains, where software failures can have dire consequences, making the proactive 

resolution of issues before they lead to downtime critical. 

2.2.4. Predictive Maintenance 

Predictive maintenance harnesses advanced data analysis tools, including AI and ML, to identify 

potential anomalies and predict software failures before they occur [14]. This proactive strategy 

enables organizations to anticipate and prevent failures, minimizing downtime and boosting 

system reliability [14]. Research demonstrates the effectiveness of predictive maintenance in the 

automotive sector, where statistical inference, stochastic methods, and AI optimize maintenance 

strategies [14, 15]. Furthermore, ML models are valuable for detecting faults in critical 

components, such as engine parts, preventing failures and highlighting the potential of predictive 

maintenance to enhance software reliability and safety in these high-stakes domains [29]. 

 

Figure 2.  Predictive maintenance workflow with AI Analytics algorithms, leading to automated 

maintenance scheme. 

3. AUTOMOTIVE INDUSTRY 

3.1. Overview of Automotive Software Systems  

Modern vehicles are heavily reliant on software for various functions, ranging from basic 

operations to advanced driver-assistance systems. The increasing complexity of these systems 

and the emergence of software-defined vehicles (SDVs) present unique challenges for software 

maintenance in the automotive industry [21].  

3.1.1. Types of Software Used in Automotive Systems 

Automotive software encompasses a wide range of applications, including: 

• Embedded Systems: These systems are the backbone of numerous vehicle functions, 

controlling critical aspects like engine operation, braking systems, and infotainment [20]. 

• Model-Based Development: To manage the growing complexity and shortened 

development cycles, the automotive industry increasingly relies on model-based software 

development. This approach leverages high-performance computing resources and 

model-based design techniques to enhance efficiency and ensure compliance with safety 

standards [17]. 
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• In-Vehicle IoT and Telematics: Connected vehicles leverage IoT and telematics systems 

to exchange data with external servers, applications, and various vehicle components, 

enabling features like smart mobility and advanced in-vehicle services [17]. 

3.2. Key Characteristics and Requirements  

Automotive software systems demand unique characteristics and must adhere to stringent 

requirements to ensure safety, performance, and reliability. 

3.2.1. Standardization and Modularity 

The AUTOSAR standard plays a critical role in developing automotive software/system 

architectures, ensuring modularity, variant handling, and standardized execution management: 

• AUTOSAR Standard: The AUTOSAR (AUTomotive Open System ARchitecture) 

standard plays a critical role in defining a standardized software architecture for 

automotive systems. It promotes modularity, facilitates variant handling, and establishes 

standardized execution management, contributing to improved software quality and 

reusability [18]. 

• Safety and Security: Given the safety-critical nature of automotive systems, adherence to 

industry standards like MISRA and AUTOSAR, along with robust cybersecurity 

practices, is paramount [19]. 

3.3. Maintenance Challenges in Automotive 

Maintaining automotive software presents significant challenges due to the intricate and safety-

critical nature of the systems: 

• Escalating Complexity: The exponential growth in software complexity within vehicles 

poses considerable challenges for traditional software engineering practices. This 

complexity arises from the interconnected nature of various systems and the increasing 

demand for advanced functionality [19, 20]. 

• Constraints and Pain Points: Automotive software development operates under strict 

constraints, including cost considerations, stringent quality requirements, tight time-to-

market pressures, and the need to seamlessly integrate with manufacturing processes. 

These constraints necessitate efficient maintenance strategies and tools [20]. 

• Software-Defined Vehicles (SDVs): The paradigm shift towards SDVs introduces new 

challenges related to software development and maintenance. Traditional research and 

development models need to adapt to accommodate the continuous evolution and update 

cycles characteristic of SDVs [21]. 

3.4. Current Practices and Approaches 

Several techniques and methodologies are employed to address the challenges of maintaining 

automotive software: 

• Lifecycle Management: Managing the extended lifecycle of automotive software is 

crucial, considering factors like platform selection, over-the-air updates, and long-term 

maintainability. Addressing these aspects ensures the sustainability and reliability of 

automotive software throughout its operational life [19]. 

• Shift-Left Testing and Verification: Early and continuous testing throughout the software 

development lifecycle is essential for automotive applications. Model-based shift-left 

testing, static analysis, and dynamic verification techniques are crucial for identifying and 
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resolving issues early on, contributing to improved software quality and reduced 

development time [17]. 

Various tools and frameworks support the development and maintenance of automotive software: 

• Advanced Development Tools: The limitations of traditional automotive software 

frameworks necessitate the adoption of more advanced tools and development 

approaches. Tools like Eclipse Zenoh and frameworks that support building scalable 

architectures are becoming increasingly important in managing the complexity of modern 

automotive software [17]. 

• Cybersecurity Frameworks: With the rise of connected vehicles, robust cybersecurity 

measures are paramount. Open and flexible frameworks specifically designed for 

automotive applications, such as PENNE, are crucial for enhancing cybersecurity training 

and evaluating the effectiveness of in-vehicle network security concepts [17]. 

By adopting these practices, tools, and frameworks, the automotive industry can strive to 

overcome the challenges of maintaining increasingly complex software systems while ensuring 

the safety, reliability, and security of modern vehicles. 

 

4. AEROSPACE INDUSTRY 

4.1. Overview of Aerospace Software Systems 

4.1.1. Types of Software Used in Aerospace Systems. 

Aerospace systems rely heavily on a diverse range of software applications to ensure safe and 

efficient operation. These applications encompass various functionalities, including: 

• Flight control systems: Responsible for managing aircraft stability, navigation, and 

autopilot functions [22, 23, 24, 25]. 

• Engine control systems: Governing engine performance, fuel efficiency, and monitoring 

engine health [27]. 

• Avionics systems: Encompassing communication, navigation, surveillance, and cockpit 

display systems [26]. 

• Mission control software: Used for spacecraft command, control, and data handling in 

space exploration missions [24, 25]. 

• Unmanned Aerial Vehicle (UAV) control systems: Enabling autonomous flight, 

navigation, and mission execution for UAVs [28]. 

4.1.2. Key Characteristics and Requirements 

Software in aerospace systems must meet stringent requirements due to the industry's emphasis 

on safety, reliability, and mission-criticality. These requirements include: 

• High Reliability and Safety: Aerospace software must adhere to rigorous safety standards 

to minimize the risk of failures that could result in loss of life, environmental damage, or 

mission failure [22, 23, 25]. 

• Deterministic Behavior: The software must operate predictably and consistently, 

especially in real-time systems where timing constraints are critical [26]. 

• Certification and Compliance: Adherence to industry standards (e.g., DO-178B, 

ARP4754A) is mandatory to ensure software quality and safety [25, 26]. 
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• Robustness and Fault Tolerance: The software must be able to withstand and recover 

from unexpected events, such as hardware failures or environmental disturbances [23]. 

• Security: Protecting aerospace systems from cyberattacks is crucial, demanding robust 

security measures within the software [28]. 

4.2. Maintenance Challenges in Aerospace 

4.2.1. Specific Challenges in Maintaining Aerospace Software 

Maintaining aerospace software presents unique challenges due to the industry's specific 

constraints and operational environment. Some key challenges include: 

• System Complexity: Modern aircraft and spacecraft comprise intricate, interconnected 

systems, making it difficult to understand the impact of software changes and potential 

ripple effects [23, 25]. 

• Safety-Critical Nature: Even minor software errors can have catastrophic consequences, 

requiring rigorous testing and verification processes [23]. 

• Long System Lifecycles: Aerospace systems often operate for decades, necessitating 

ongoing maintenance and updates to address evolving requirements and technology 

advancements [23]. 

• Access and Downtime Constraints: Accessing software components for maintenance can 

be challenging, especially in flight-critical systems. Downtime must be minimized to 

maintain operational efficiency 

• Due to safety and security concerns, software in aerospace domains are usually accessible 

to the outside via a wired, ad-hoc maintenance window. 

• Data Management and Analysis: Modern aircraft generate vast amounts of data. 

Effectively managing, analysing, and utilizing this data for maintenance purposes is 

crucial but complex [27]. 

• Certification and Qualification: Software updates often require re-certification, which can 

be time-consuming and expensive [26]. 

4.3. Current Practices and Approaches 

4.3.1. Techniques and Methodologies Used 

The aerospace industry employs a range of practices and methodologies to address software 

maintenance challenges: 

• Model-Based Development: Using models to represent software systems throughout the 

development lifecycle, enabling early verification and validation [17, 19]. 

• Formal Methods: Utilizing mathematical techniques for software specification, design, 

and verification to ensure correctness and reliability [24, 25]. 

• Condition-Based Maintenance (CBM): Employing sensor data and predictive analytics 

to anticipate maintenance needs and optimize maintenance schedules [27, 31]. 

• Deep Learning (DL): Leveraging DL algorithms for tasks such as anomaly detection, 

fault diagnosis, and remaining useful life (RUL) estimation [27]. 

• Digital Twins: Creating virtual representations of physical assets to simulate behaviour, 

analyse data, and predict maintenance needs [14, 30]. 
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4.3.2. Tools and Frameworks 

• Integrated Development Environments (IDEs): Specialized IDEs for aerospace software 

development and debugging, often integrated with certification and verification tools. 

• Testing and Simulation Tools: Tools for conducting rigorous software testing, including 

unit testing, integration testing, and system-level simulation. 

• Configuration Management Tools: Managing software versions, configurations, and 

release processes to ensure traceability and control. 

• Data Analytics Platforms: Platforms for collecting, storing, processing, and visualizing 

aircraft data to support maintenance decision-making. 

 

5. COMPARATIVE ANALYSIS 

5.1. Commonalities Across Domains 

While the automotive and aerospace industries have distinct characteristics, they share several 

commonalities in their approach to software maintenance for safety-critical applications: 

• Emphasis on Safety and Reliability: Both domains prioritize the safety and reliability of 

their systems above all else. Software failures in either industry can have catastrophic 

consequences, necessitating rigorous development, testing, and maintenance practices. 

• Rigorous standards and certification: Both industries adhere to stringent safety standards 

and regulations. Automotive software must comply with standards such as ISO 26262, 

while aerospace software follows guidelines like DO-178C. Compliance with these 

standards is essential for ensuring system safety and obtaining necessary certifications. 

• Increasing Software Complexity: Both automotive and aerospace systems are 

experiencing a rapid increase in software complexity. The growing demand for advanced 

features, connectivity, and automation leads to more complex software systems that 

require sophisticated maintenance strategies. 

• Adoption of Model-Based Development: Both industries increasingly leverage model-

based development techniques to manage complexity and enhance the efficiency of 

software development and maintenance processes. 

• Importance of Data Analytics: The increasing use of sensors and data logging in both 

automotive and aerospace systems generates a vast amount of data. Both industries are 

exploring the potential of data analytics and machine learning [15] to improve 

maintenance practices and predict potential failures. 

5.2. Domain Specific Differences 

Despite the shared emphasis on safety, several key differences exist between the automotive and 

aerospace industries regarding software maintenance: 

• System Lifecycles: Aerospace systems typically have significantly longer lifecycles than 

automotive systems. Aircraft often remain in operation for decades, requiring long-term 

maintenance and support for software systems. In contrast, automotive software 

lifecycles are shorter due to rapid technological advancements and model updates [16]. 

This difference impacts maintenance strategies, with aerospace systems requiring greater 

emphasis on long-term sustainability and obsolescence management. 
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• Development and Certification Costs: The aerospace industry generally incurs higher 

development and certification costs compared to the automotive industry. The stringent 

safety requirements and complexity of aerospace systems necessitate extensive testing, 

verification, and formal certification processes, driving up costs. 

• Production Volumes and Update Deployment: The automotive industry deals with 

significantly higher production volumes compared to the aerospace industry. This 

difference affects how software updates are deployed and managed. Automotive 

manufacturers increasingly utilize over-the-air (OTA) updates for efficient software 

distribution and installation across large fleets. In contrast, aerospace software updates 

typically involve more complex procedures due to the criticality of the systems and 

rigorous safety regulations. 

• Environmental Conditions: Aerospace systems operate in harsher and more varied 

environmental conditions than automotive systems. Factors like extreme temperatures, 

pressure changes, and radiation exposure pose unique challenges for aerospace software 

maintenance, demanding robust solutions that can withstand demanding conditions. 

• Human Factor Considerations: While both industries prioritize safety, the aerospace 

domain places a heightened emphasis on the human factor. Pilots and astronauts heavily 

rely on software systems for critical tasks, making human-machine interface design and 

user training crucial aspects of maintenance and safety considerations in aerospace 

systems. 

6. EMERGING TRENDS AND FUTURE DIRECTIONS 

6.1. Trends in Software Maintenance 

The field of software maintenance, particularly within safety-critical domains like automotive and 

aerospace, is continuously evolving. Several prominent trends are shaping the future of software 

maintenance in these sectors: 

• Artificial Intelligence [29] and Machine Learning (AI/ML): The use of AI/ML is 

revolutionizing predictive maintenance strategies [14, 29]. By analyzing vast amounts of 

sensor data, AI/ML algorithms can identify patterns, predict potential failures, and enable 

proactive maintenance, minimizing downtime and enhancing system reliability [27, 28]. 

• Digital Twins: Digital twins, virtual representations of physical assets, are gaining 

traction in both automotive and aerospace industries [14, 30]. By simulating real-world 

operating conditions and leveraging sensor data, digital twins enable engineers to monitor 

system health, predict maintenance needs, and optimize maintenance schedules, leading 

to significant cost savings and improved safety. 

• Over-the-Air (OTA) Updates: OTA software updates are becoming increasingly 

prevalent, especially in the automotive industry [21]. The ability to deliver software 

updates remotely and seamlessly allows manufacturers to address bugs, enhance 

functionality, and improve security without requiring physical access to the vehicles. 

However, ensuring the safe and reliable execution of OTA updates in safety-critical 

systems remains a crucial consideration. 

• Increased Automation: Automating maintenance tasks is a growing trend aimed at 

improving efficiency and reducing human error. This includes automating tasks like code 

analysis, testing, and deployment. As software complexity continues to grow, automation 

will play an increasingly important role in ensuring the timely and effective maintenance 

of safety-critical systems. 
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• Cybersecurity Enhancements: As vehicles and aircraft become increasingly connected, 

cybersecurity threats are becoming more sophisticated. Consequently, there is a growing 

need for robust cybersecurity measures integrated into software maintenance practices. 

This includes secure software development practices, regular security audits, and timely 

patching of vulnerabilities to mitigate the risk of cyberattacks. 

6.2. Future Research Directions 

Despite advancements in software maintenance practices, several research areas require further 

exploration to address emerging challenges and enhance the reliability and safety of software in 

automotive and aerospace applications: 

• Developing robust and interpretable AI/ML models for predictive maintenance: While 

AI/ML shows promise in predictive maintenance, ensuring the reliability, 

trustworthiness, and interpretability of these models is crucial. Further research is needed 

to develop methods for validating AI/ML predictions, understanding model behaviour, 

and building trust in AI-driven maintenance decisions. 

• Standardizing data formats and communication protocols for digital twins: The adoption 

of digital twins necessitates standardized data formats and communication protocols to 

enable seamless data exchange and interoperability between different systems and 

stakeholders. Establishing such standards will facilitate wider adoption and maximize the 

benefits of digital twins in maintenance applications. 

• Ensuring the security of OTA updates in safety-critical systems: As OTA updates become 

more prevalent, ensuring their secure delivery and execution is paramount. Research is 

needed to develop robust security mechanisms, such as secure boot processes and tamper-

proof software updates, to prevent unauthorized modifications and ensure the integrity of 

safety-critical systems. 

• Developing automated testing and verification techniques for complex software systems: 

The increasing complexity of software systems demands more sophisticated testing and 

verification methods. Research into automated testing techniques, formal verification 

methods, and runtime monitoring tools is essential to ensure the reliability and safety of 

these complex systems. 

• Investigating the ethical implications of AI and automation in software maintenance: As 

AI and automation play a larger role in software maintenance, it is crucial to address the 

ethical implications. Research is needed to develop guidelines and best practices for 

responsible AI development and deployment, ensuring human oversight and 

accountability in maintenance decisions. 

7. CONCLUSIONS 

Software maintenance is not merely an afterthought in the development lifecycle; it is an ongoing, 

critical process essential for the safe, reliable, and secure operation of safety-critical systems in 

the automotive and aerospace industries. This paper explored the multifaceted landscape of 

software maintenance in these domains, highlighting the unique challenges, current practices, and 

emerging trends shaping the field. 

 

The automotive and aerospace industries share common ground in prioritizing safety and 

grappling with increasing software complexity. Both sectors are turning to model-based 

development, rigorous testing, and data analytics to manage this complexity and ensure system 
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reliability. However, domain-specific differences like system lifecycles, development costs, and 

operational environments necessitate tailored approaches to software maintenance. 

 

Emerging trends, including AI/ML, digital twins, OTA updates, and increased automation, hold 

immense promise for revolutionizing software maintenance practices, making them more 

proactive, efficient, and effective. However, these advancements also introduce new challenges, 

requiring further research to address security concerns, ensure model interpretability, and 

navigate ethical considerations. 

 

As software continues to permeate every facet of automotive and aerospace systems, effective 

software maintenance will only grow in importance. Continued research, collaboration, and 

innovation are crucial to meeting the evolving demands of these safety-critical domains and 

ensuring the well-being of those who rely on these systems.  
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