
Science Transactions © 2024 International Journal of Advances in

Soft Computing and Intelligent Systems (IJASCIS)

2024, Vol 03, Issue 02, 349-361 Original Paper

ISSN: 3048-4987

349

MAINTENANCE IN AUTOMOTIVE AND
AEROSPACE APPLICATIONS – AN OVERVIEW

Vikas Vyasa, *, Zheyuan Xub, *

a Department of Autonomous Driving, Mercedes-Benz Research & Development North

America, Sunnyvale CA, 94087, vikas.vyas@mercedes-benz.com
b INSPYR Solutions, Fort Lauderdale, FL, 33334, zheyuan.xu@mercedes-benz.com,

xuzheyuan961124@gmail.com

ABSTRACT

The importance of software maintenance in safety-critical applications, such as automotive and aerospace

systems, cannot be overstated. Safety-critical systems are those whose failure could result in loss of life,

significant property damage, or environmental harm. Examples include aircraft, cars, medical devices, and

nuclear power plants. Regular software maintenance is crucial to ensure these systems remain secure and

protected against vulnerabilities. Updates address security flaws, patch known exploits, and enhance

security protocols to guard against emerging threats. This paper provides an overview of the essential role

of software maintenance in safety-critical systems, highlighting the necessity of prompt security updates,

the challenges posed by cyber threats, and the importance of maintaining a secure software environment. It

also discusses the specific challenges faced in the automotive and aerospace industries, current practices

and approaches, and emerging trends in software maintenance. The paper concludes with a comparative

analysis of the maintenance practices across these domains, emphasizing the commonalities and

differences, and outlines future research directions to further enhance the safety and reliability of software

in these critical applications.

KEYWORDS

software maintenance, automotive, aerospace, safety applications

1. INTRODUCTION

1.1. Background

The criticality of software maintenance in safety-critical domains such as automotive and

aerospace cannot be understated. Safety-critical systems, including aircraft, cars, medical devices,

and nuclear power plants, are systems whose failure could result in loss of life, significant

property damage, or environmental damage [4]. These systems rely heavily on software to

perform essential functions, and the integrity of this software is paramount to ensuring overall

system safety.

The challenges of integrating agile methodologies into the development of safety-critical systems

are significant. Large-scale agile frameworks such as SAFe (Scaled Agile Framework) and LeSS

(Large Scale Scrum) have been widely adopted in the automotive industry to enhance productivity

and flexibility. However, these frameworks must be carefully adapted to incorporate rigorous

safety practices [19]. This adaptation [10] is crucial as the automotive industry faces increasing

software complexity, with premium cars now containing over ten million lines of code [19].

Incident reporting systems are crucial for maintaining safety in safety-critical applications.

However, existing systems, often relying on relational databases, face problems such as data

elicitation bias, precision and recall issues, data abstraction challenges, and inter-analyst

reliability [1]. To address these challenges, solutions like computer-assisted interviewing, free-

text retrieval and probabilistic inference, and conversational case-based reasoning have been

proposed [1].

mailto:vikas.vyas@mercedes-benz.com
mailto:zheyuan.xu@mercedes-benz.com
mailto:xuzheyuan961124@gmail.com

Vyas and Xu 2024 Science Transactions ©

350

The importance of extending quality [6] assurance techniques to software development in safety-

critical domains is another focal point. The paper discusses the unique challenges faced in these

environments and emphasizes the need for robust quality assurance practices to ensure software

safety and security. This is particularly relevant in the context of the automotive industry, where

software drives innovation and enables new features [19].

The paper also reviews various safety-critical applications across automotive, aerospace, and

other domains. The increasing prevalence of software-defined vehicles (SDV) is transforming the

automotive industry from technology, products, services, and enterprise competition perspectives

[21]. In the aerospace sector, the shift from time-based to condition-based maintenance [31],

driven by advancements in sensor technology, necessitates sophisticated data analysis techniques,

with deep learning emerging as a promising solution [21].

1.2. Objectives and scope

The primary objective of this paper is to provide a comprehensive overview of software

maintenance in safety-critical applications, with a particular focus on the automotive and

aerospace industries. The survey aims to highlight the importance of regular software

maintenance, identify common challenges, and discuss current practices and emerging trends.

The scope of this paper includes an examination of various types of maintenance, the specific

challenges faced in the automotive and aerospace sectors, and a comparative analysis of

maintenance practices across these domains.

1.2. Structure of the paper

In this paper, section 2 defines software maintenance and discusses its importance in safety-

critical applications, outlining different types of maintenance activities. Section 3 provides an in-

depth look at the automotive industry's software systems, maintenance challenges, current

practices, and tools, including the impact of software-defined vehicles [21]. Section 4 focuses on

the aerospace industry, exploring the challenges of developing software for aerospace systems

[24] and the application of artificial intelligence in aerospace maintenance [27, 28]. Section 5

offers a comparative analysis of maintenance practices across the automotive and aerospace

domains, highlighting both commonalities and domain-specific differences. Section 6 explores

emerging trends and future directions in software maintenance, including the role of automation,

AI, and predictive maintenance [14, 29]. Section 7 concludes the paper with a summary of key

findings and final thoughts on the importance of software maintenance in safety-critical

applications.

2. SOFTWARE MAINTENANCE IN SAFETY-CRITICAL APPLICATIONS

2.1. Definition and importance

Software maintenance, defined as the modification of a software product after delivery [7], is

essential for correcting faults, enhancing performance, adapting to changing environments, and

ensuring continued user satisfaction [8]. This involves rectifying bugs, integrating new features,

and ensuring compatibility with evolving hardware and software ecosystems [7]. In safety-critical

domains like automotive and aerospace, where software increasingly underpins crucial

functionalities, the reliability and precision of this software are paramount to overall system safety

[1, 2, 3, 4, 5].

Recent research underscores several key aspects of software maintenance in these high-stakes

environments:

• Functional safety standards and fail-safe designs are non-negotiable for guaranteeing

system integrity [2, 5].

Vyas and Xu 2024 Science Transactions ©

351

• Developing comprehensive, clear, and verifiable requirements specifications is a major

challenge, demanding sustained stakeholder alignment throughout the system's lifespan

[3, 24].

• While software unlocks complex functionalities and mitigates certain risks, it can

introduce new hazards if not rigorously maintained and updated [1, 4]

• The increasing software-intensity of modern systems in these sectors amplifies the

criticality of effective software maintenance. This is particularly crucial given the

potential for substantial financial repercussions or even loss of life in case of system

failures [5, 23].

2.2. Types of Maintenance

2.2.1. Corrective Maintenance

Corrective maintenance [30], a reactive approach to rectifying identified software problems after

deployment, is indispensable for upholding the reliability and integrity of safety-critical software

systems in the automotive and aerospace industries [7]. Studies reveal that software maintenance

constitutes a significant portion, often 60-90%, of the total cost of ownership for an application

[8]. The IEEE standards classify software maintenance into four primary categories, with

corrective maintenance being one of them, supported by a range of techniques, methodologies,

and tools [7]. Research indicates that a substantial portion of maintenance efforts, approximately

75%, is dedicated to adaptive and perfective maintenance [12], encompassing corrective actions

[8]. Therefore, developing robust maintenance models that minimize rework expenses and

enhance customer satisfaction is paramount, especially in domains where software failures carry

severe consequences [7].

2.2.2. Adaptive Maintenance

Adaptive maintenance ensures software applications remain compatible and functional within

evolving environments. This encompasses adapting to hardware updates, operating system

changes, software dependency modifications, and evolving regulatory requirements [9]. This

form of maintenance focuses on modifying software post-deployment to align with these changes,

ensuring its continued usability and effectiveness [9]. Automating adaptive maintenance tasks

enhances efficiency in managing the evolution of software systems, often utilizing high-level

specifications to synthesize specialized code for this purpose [9].

2.2.3. Perfective Maintenance

Perfective maintenance [12] focuses on enhancing software quality by improving performance,

maintainability, and overall robustness. This includes increasing efficiency, reliability, and

adaptability to future modifications [11]. Research suggests that a considerable amount of

development time and resources, up to 70%, is allocated to maintenance, underlining the need for

effective maintenance models that prioritize software quality and customer satisfaction [7].

Techniques like visual analysis can be employed to pinpoint areas for improvement and optimize

code quality during perfective maintenance, ultimately minimizing future costs and simplifying

adaptations in complex software systems [11].

2.2.4. Preventative Maintenance

Preventive maintenance adopts a proactive stance, involving targeted software modifications to

detect and address potential faults before they escalate into actual errors [13]. This approach aims

to mitigate software failure risks, minimize downtime, and ensure the reliability and performance

of critical systems [13]. Organizations can reduce planned downtime, enhance equipment

reliability, and optimize system performance by implementing effective preventive maintenance

strategies and scheduling [13]. A well-structured preventive maintenance program is essential in

Vyas and Xu 2024 Science Transactions ©

352

safety-critical domains, where software failures can have dire consequences, making the proactive

resolution of issues before they lead to downtime critical.

2.2.4. Predictive Maintenance

Predictive maintenance harnesses advanced data analysis tools, including AI and ML, to identify

potential anomalies and predict software failures before they occur [14]. This proactive strategy

enables organizations to anticipate and prevent failures, minimizing downtime and boosting

system reliability [14]. Research demonstrates the effectiveness of predictive maintenance in the

automotive sector, where statistical inference, stochastic methods, and AI optimize maintenance

strategies [14, 15]. Furthermore, ML models are valuable for detecting faults in critical

components, such as engine parts, preventing failures and highlighting the potential of predictive

maintenance to enhance software reliability and safety in these high-stakes domains [29].

Figure 2. Predictive maintenance workflow with AI Analytics algorithms, leading to automated

maintenance scheme.

3. AUTOMOTIVE INDUSTRY

3.1. Overview of Automotive Software Systems

Modern vehicles are heavily reliant on software for various functions, ranging from basic

operations to advanced driver-assistance systems. The increasing complexity of these systems

and the emergence of software-defined vehicles (SDVs) present unique challenges for software

maintenance in the automotive industry [21].

3.1.1. Types of Software Used in Automotive Systems

Automotive software encompasses a wide range of applications, including:

• Embedded Systems: These systems are the backbone of numerous vehicle functions,

controlling critical aspects like engine operation, braking systems, and infotainment [20].

• Model-Based Development: To manage the growing complexity and shortened

development cycles, the automotive industry increasingly relies on model-based software

development. This approach leverages high-performance computing resources and

model-based design techniques to enhance efficiency and ensure compliance with safety

standards [17].

Vyas and Xu 2024 Science Transactions ©

353

• In-Vehicle IoT and Telematics: Connected vehicles leverage IoT and telematics systems

to exchange data with external servers, applications, and various vehicle components,

enabling features like smart mobility and advanced in-vehicle services [17].

3.2. Key Characteristics and Requirements

Automotive software systems demand unique characteristics and must adhere to stringent

requirements to ensure safety, performance, and reliability.

3.2.1. Standardization and Modularity

The AUTOSAR standard plays a critical role in developing automotive software/system

architectures, ensuring modularity, variant handling, and standardized execution management:

• AUTOSAR Standard: The AUTOSAR (AUTomotive Open System ARchitecture)

standard plays a critical role in defining a standardized software architecture for

automotive systems. It promotes modularity, facilitates variant handling, and establishes

standardized execution management, contributing to improved software quality and

reusability [18].

• Safety and Security: Given the safety-critical nature of automotive systems, adherence to

industry standards like MISRA and AUTOSAR, along with robust cybersecurity

practices, is paramount [19].

3.3. Maintenance Challenges in Automotive

Maintaining automotive software presents significant challenges due to the intricate and safety-

critical nature of the systems:

• Escalating Complexity: The exponential growth in software complexity within vehicles

poses considerable challenges for traditional software engineering practices. This

complexity arises from the interconnected nature of various systems and the increasing

demand for advanced functionality [19, 20].

• Constraints and Pain Points: Automotive software development operates under strict

constraints, including cost considerations, stringent quality requirements, tight time-to-

market pressures, and the need to seamlessly integrate with manufacturing processes.

These constraints necessitate efficient maintenance strategies and tools [20].

• Software-Defined Vehicles (SDVs): The paradigm shift towards SDVs introduces new

challenges related to software development and maintenance. Traditional research and

development models need to adapt to accommodate the continuous evolution and update

cycles characteristic of SDVs [21].

3.4. Current Practices and Approaches

Several techniques and methodologies are employed to address the challenges of maintaining

automotive software:

• Lifecycle Management: Managing the extended lifecycle of automotive software is

crucial, considering factors like platform selection, over-the-air updates, and long-term

maintainability. Addressing these aspects ensures the sustainability and reliability of

automotive software throughout its operational life [19].

• Shift-Left Testing and Verification: Early and continuous testing throughout the software

development lifecycle is essential for automotive applications. Model-based shift-left

testing, static analysis, and dynamic verification techniques are crucial for identifying and

Vyas and Xu 2024 Science Transactions ©

354

resolving issues early on, contributing to improved software quality and reduced

development time [17].

Various tools and frameworks support the development and maintenance of automotive software:

• Advanced Development Tools: The limitations of traditional automotive software

frameworks necessitate the adoption of more advanced tools and development

approaches. Tools like Eclipse Zenoh and frameworks that support building scalable

architectures are becoming increasingly important in managing the complexity of modern

automotive software [17].

• Cybersecurity Frameworks: With the rise of connected vehicles, robust cybersecurity

measures are paramount. Open and flexible frameworks specifically designed for

automotive applications, such as PENNE, are crucial for enhancing cybersecurity training

and evaluating the effectiveness of in-vehicle network security concepts [17].

By adopting these practices, tools, and frameworks, the automotive industry can strive to

overcome the challenges of maintaining increasingly complex software systems while ensuring

the safety, reliability, and security of modern vehicles.

4. AEROSPACE INDUSTRY

4.1. Overview of Aerospace Software Systems

4.1.1. Types of Software Used in Aerospace Systems.

Aerospace systems rely heavily on a diverse range of software applications to ensure safe and

efficient operation. These applications encompass various functionalities, including:

• Flight control systems: Responsible for managing aircraft stability, navigation, and

autopilot functions [22, 23, 24, 25].

• Engine control systems: Governing engine performance, fuel efficiency, and monitoring

engine health [27].

• Avionics systems: Encompassing communication, navigation, surveillance, and cockpit

display systems [26].

• Mission control software: Used for spacecraft command, control, and data handling in

space exploration missions [24, 25].

• Unmanned Aerial Vehicle (UAV) control systems: Enabling autonomous flight,

navigation, and mission execution for UAVs [28].

4.1.2. Key Characteristics and Requirements

Software in aerospace systems must meet stringent requirements due to the industry's emphasis

on safety, reliability, and mission-criticality. These requirements include:

• High Reliability and Safety: Aerospace software must adhere to rigorous safety standards

to minimize the risk of failures that could result in loss of life, environmental damage, or

mission failure [22, 23, 25].

• Deterministic Behavior: The software must operate predictably and consistently,

especially in real-time systems where timing constraints are critical [26].

• Certification and Compliance: Adherence to industry standards (e.g., DO-178B,

ARP4754A) is mandatory to ensure software quality and safety [25, 26].

Vyas and Xu 2024 Science Transactions ©

355

• Robustness and Fault Tolerance: The software must be able to withstand and recover

from unexpected events, such as hardware failures or environmental disturbances [23].

• Security: Protecting aerospace systems from cyberattacks is crucial, demanding robust

security measures within the software [28].

4.2. Maintenance Challenges in Aerospace

4.2.1. Specific Challenges in Maintaining Aerospace Software

Maintaining aerospace software presents unique challenges due to the industry's specific

constraints and operational environment. Some key challenges include:

• System Complexity: Modern aircraft and spacecraft comprise intricate, interconnected

systems, making it difficult to understand the impact of software changes and potential

ripple effects [23, 25].

• Safety-Critical Nature: Even minor software errors can have catastrophic consequences,

requiring rigorous testing and verification processes [23].

• Long System Lifecycles: Aerospace systems often operate for decades, necessitating

ongoing maintenance and updates to address evolving requirements and technology

advancements [23].

• Access and Downtime Constraints: Accessing software components for maintenance can

be challenging, especially in flight-critical systems. Downtime must be minimized to

maintain operational efficiency

• Due to safety and security concerns, software in aerospace domains are usually accessible

to the outside via a wired, ad-hoc maintenance window.

• Data Management and Analysis: Modern aircraft generate vast amounts of data.

Effectively managing, analysing, and utilizing this data for maintenance purposes is

crucial but complex [27].

• Certification and Qualification: Software updates often require re-certification, which can

be time-consuming and expensive [26].

4.3. Current Practices and Approaches

4.3.1. Techniques and Methodologies Used

The aerospace industry employs a range of practices and methodologies to address software

maintenance challenges:

• Model-Based Development: Using models to represent software systems throughout the

development lifecycle, enabling early verification and validation [17, 19].

• Formal Methods: Utilizing mathematical techniques for software specification, design,

and verification to ensure correctness and reliability [24, 25].

• Condition-Based Maintenance (CBM): Employing sensor data and predictive analytics

to anticipate maintenance needs and optimize maintenance schedules [27, 31].

• Deep Learning (DL): Leveraging DL algorithms for tasks such as anomaly detection,

fault diagnosis, and remaining useful life (RUL) estimation [27].

• Digital Twins: Creating virtual representations of physical assets to simulate behaviour,

analyse data, and predict maintenance needs [14, 30].

Vyas and Xu 2024 Science Transactions ©

356

4.3.2. Tools and Frameworks

• Integrated Development Environments (IDEs): Specialized IDEs for aerospace software

development and debugging, often integrated with certification and verification tools.

• Testing and Simulation Tools: Tools for conducting rigorous software testing, including

unit testing, integration testing, and system-level simulation.

• Configuration Management Tools: Managing software versions, configurations, and

release processes to ensure traceability and control.

• Data Analytics Platforms: Platforms for collecting, storing, processing, and visualizing

aircraft data to support maintenance decision-making.

5. COMPARATIVE ANALYSIS

5.1. Commonalities Across Domains

While the automotive and aerospace industries have distinct characteristics, they share several

commonalities in their approach to software maintenance for safety-critical applications:

• Emphasis on Safety and Reliability: Both domains prioritize the safety and reliability of

their systems above all else. Software failures in either industry can have catastrophic

consequences, necessitating rigorous development, testing, and maintenance practices.

• Rigorous standards and certification: Both industries adhere to stringent safety standards

and regulations. Automotive software must comply with standards such as ISO 26262,

while aerospace software follows guidelines like DO-178C. Compliance with these

standards is essential for ensuring system safety and obtaining necessary certifications.

• Increasing Software Complexity: Both automotive and aerospace systems are

experiencing a rapid increase in software complexity. The growing demand for advanced

features, connectivity, and automation leads to more complex software systems that

require sophisticated maintenance strategies.

• Adoption of Model-Based Development: Both industries increasingly leverage model-

based development techniques to manage complexity and enhance the efficiency of

software development and maintenance processes.

• Importance of Data Analytics: The increasing use of sensors and data logging in both

automotive and aerospace systems generates a vast amount of data. Both industries are

exploring the potential of data analytics and machine learning [15] to improve

maintenance practices and predict potential failures.

5.2. Domain Specific Differences

Despite the shared emphasis on safety, several key differences exist between the automotive and

aerospace industries regarding software maintenance:

• System Lifecycles: Aerospace systems typically have significantly longer lifecycles than

automotive systems. Aircraft often remain in operation for decades, requiring long-term

maintenance and support for software systems. In contrast, automotive software

lifecycles are shorter due to rapid technological advancements and model updates [16].

This difference impacts maintenance strategies, with aerospace systems requiring greater

emphasis on long-term sustainability and obsolescence management.

Vyas and Xu 2024 Science Transactions ©

357

• Development and Certification Costs: The aerospace industry generally incurs higher

development and certification costs compared to the automotive industry. The stringent

safety requirements and complexity of aerospace systems necessitate extensive testing,

verification, and formal certification processes, driving up costs.

• Production Volumes and Update Deployment: The automotive industry deals with

significantly higher production volumes compared to the aerospace industry. This

difference affects how software updates are deployed and managed. Automotive

manufacturers increasingly utilize over-the-air (OTA) updates for efficient software

distribution and installation across large fleets. In contrast, aerospace software updates

typically involve more complex procedures due to the criticality of the systems and

rigorous safety regulations.

• Environmental Conditions: Aerospace systems operate in harsher and more varied

environmental conditions than automotive systems. Factors like extreme temperatures,

pressure changes, and radiation exposure pose unique challenges for aerospace software

maintenance, demanding robust solutions that can withstand demanding conditions.

• Human Factor Considerations: While both industries prioritize safety, the aerospace

domain places a heightened emphasis on the human factor. Pilots and astronauts heavily

rely on software systems for critical tasks, making human-machine interface design and

user training crucial aspects of maintenance and safety considerations in aerospace

systems.

6. EMERGING TRENDS AND FUTURE DIRECTIONS

6.1. Trends in Software Maintenance

The field of software maintenance, particularly within safety-critical domains like automotive and

aerospace, is continuously evolving. Several prominent trends are shaping the future of software

maintenance in these sectors:

• Artificial Intelligence [29] and Machine Learning (AI/ML): The use of AI/ML is

revolutionizing predictive maintenance strategies [14, 29]. By analyzing vast amounts of

sensor data, AI/ML algorithms can identify patterns, predict potential failures, and enable

proactive maintenance, minimizing downtime and enhancing system reliability [27, 28].

• Digital Twins: Digital twins, virtual representations of physical assets, are gaining

traction in both automotive and aerospace industries [14, 30]. By simulating real-world

operating conditions and leveraging sensor data, digital twins enable engineers to monitor

system health, predict maintenance needs, and optimize maintenance schedules, leading

to significant cost savings and improved safety.

• Over-the-Air (OTA) Updates: OTA software updates are becoming increasingly

prevalent, especially in the automotive industry [21]. The ability to deliver software

updates remotely and seamlessly allows manufacturers to address bugs, enhance

functionality, and improve security without requiring physical access to the vehicles.

However, ensuring the safe and reliable execution of OTA updates in safety-critical

systems remains a crucial consideration.

• Increased Automation: Automating maintenance tasks is a growing trend aimed at

improving efficiency and reducing human error. This includes automating tasks like code

analysis, testing, and deployment. As software complexity continues to grow, automation

will play an increasingly important role in ensuring the timely and effective maintenance

of safety-critical systems.

Vyas and Xu 2024 Science Transactions ©

358

• Cybersecurity Enhancements: As vehicles and aircraft become increasingly connected,

cybersecurity threats are becoming more sophisticated. Consequently, there is a growing

need for robust cybersecurity measures integrated into software maintenance practices.

This includes secure software development practices, regular security audits, and timely

patching of vulnerabilities to mitigate the risk of cyberattacks.

6.2. Future Research Directions

Despite advancements in software maintenance practices, several research areas require further

exploration to address emerging challenges and enhance the reliability and safety of software in

automotive and aerospace applications:

• Developing robust and interpretable AI/ML models for predictive maintenance: While

AI/ML shows promise in predictive maintenance, ensuring the reliability,

trustworthiness, and interpretability of these models is crucial. Further research is needed

to develop methods for validating AI/ML predictions, understanding model behaviour,

and building trust in AI-driven maintenance decisions.

• Standardizing data formats and communication protocols for digital twins: The adoption

of digital twins necessitates standardized data formats and communication protocols to

enable seamless data exchange and interoperability between different systems and

stakeholders. Establishing such standards will facilitate wider adoption and maximize the

benefits of digital twins in maintenance applications.

• Ensuring the security of OTA updates in safety-critical systems: As OTA updates become

more prevalent, ensuring their secure delivery and execution is paramount. Research is

needed to develop robust security mechanisms, such as secure boot processes and tamper-

proof software updates, to prevent unauthorized modifications and ensure the integrity of

safety-critical systems.

• Developing automated testing and verification techniques for complex software systems:

The increasing complexity of software systems demands more sophisticated testing and

verification methods. Research into automated testing techniques, formal verification

methods, and runtime monitoring tools is essential to ensure the reliability and safety of

these complex systems.

• Investigating the ethical implications of AI and automation in software maintenance: As

AI and automation play a larger role in software maintenance, it is crucial to address the

ethical implications. Research is needed to develop guidelines and best practices for

responsible AI development and deployment, ensuring human oversight and

accountability in maintenance decisions.

7. CONCLUSIONS

Software maintenance is not merely an afterthought in the development lifecycle; it is an ongoing,

critical process essential for the safe, reliable, and secure operation of safety-critical systems in

the automotive and aerospace industries. This paper explored the multifaceted landscape of

software maintenance in these domains, highlighting the unique challenges, current practices, and

emerging trends shaping the field.

The automotive and aerospace industries share common ground in prioritizing safety and

grappling with increasing software complexity. Both sectors are turning to model-based

development, rigorous testing, and data analytics to manage this complexity and ensure system

Vyas and Xu 2024 Science Transactions ©

359

reliability. However, domain-specific differences like system lifecycles, development costs, and

operational environments necessitate tailored approaches to software maintenance.

Emerging trends, including AI/ML, digital twins, OTA updates, and increased automation, hold

immense promise for revolutionizing software maintenance practices, making them more

proactive, efficient, and effective. However, these advancements also introduce new challenges,

requiring further research to address security concerns, ensure model interpretability, and

navigate ethical considerations.

As software continues to permeate every facet of automotive and aerospace systems, effective

software maintenance will only grow in importance. Continued research, collaboration, and

innovation are crucial to meeting the evolving demands of these safety-critical domains and

ensuring the well-being of those who rely on these systems.

REFERENCES

[1] Johnson, C. (2000). Software Support for Incident Reporting Systems in Safety-Critical

Applications. In: Koornneef, F., van der Meulen, M. (eds) Computer Safety, Reliability and Security.

SAFECOMP 2000. Lecture Notes in Computer Science, vol 1943. Springer, Berlin, Heidelberg.

[2] R. Shaw, "Safety-critical software and current standards initiatives," Computer Methods and

Programs in Biomedicine, vol. 44, no. 1, pp. 5-22, 1994, doi: 10.1016/0169-2607(94)90143-0.

[3] L. E. G. Martins and T. Gorschek, "Requirements Engineering for Safety-Critical Systems:

Overview and Challenges," in IEEE Software, vol. 34, no. 4, pp. 49-57, 2017, doi: 10.1109/MS.2017.94.

[4] John C. Knight. 2002. Safety critical systems: challenges and directions. In Proceedings of the

24th International Conference on Software Engineering (ICSE '02). Association for Computing

Machinery, New York, NY, USA, 547–550.

[5] Pietrantuono, R., & Russo, S. (2013). Introduction to Safety Critical Systems.

[6] Antinyan, V. (2023). Seven Lessons Learned From Automotive Software Supplier

Collaborations. IEEE Software, 40, 77-85.

[7] N. Gorla, "Techniques for application software maintenance," Information and Software

Technology, vol. 33, no. 1, pp. 65-73, 1991, doi: 10.1016/0950-5849(91)90025-7.

[8] Uttamjit Kaur, Gagandeep Singh . A Review on Software Maintenance Issues and How to

Reduce Maintenance Efforts. International Journal of Computer Applications. 118, 1 (May 2015), 6-11.

DOI=10.5120/20707-3021

[9] Tansey, W. (2008). Automated Adaptive Software Maintenance: A Methodology and Its

Applications.

[10] Lapouchnian, A. (2011). Exploiting Requirements Variability for Software Customization and

Adaptation.

[11] J. Trümper, M. Beck and J. Döllner, "A Visual Analysis Approach to Support Perfective

Software Maintenance," 2012 16th International Conference on Information Visualisation, Montpellier,

France, 2012, pp. 308-315, doi: 10.1109/IV.2012.59.

Vyas and Xu 2024 Science Transactions ©

360

[12] D. Rine, "Software perfective maintenance: Including retrainable software in software reuse,"

Information Sciences, vol. 75, no. 1, pp. 109-132, 1993, doi: 10.1016/0020-0255(93)90116-4.

[13] Ab-Samat, H., Jeikumar, L.N., Basri, E.I., Harun, N.A., & Kamaruddin, S. (2012). Effective

Preventive Maintenance Scheduling : A Case Study.

[14] Arena, F., Collotta, M., Luca, L., Ruggieri, M., & Termine, F. (2021). Predictive Maintenance in

the Automotive Sector: A Literature Review. Mathematical and Computational Applications.

[15] Tessaro I, Mariani VC, Coelho LdS. Machine Learning Models Applied to Predictive

Maintenance in Automotive Engine Components. Proceedings. 2020; 64(1):26.

[16] Schaefer, J., Christlbauer, H., Schreiber, A., Reith, G., Jonker, M., Potman, J., Dannebaum, U.,

& Eissfeldt, T. (2021). Future Automotive Embedded Systems Enabled by Efficient Model-Based

Software Development.

[17] Dajsuren, Y., & Brand, M.V. (2019). Automotive Software Engineering: Past, Present, and

Future. Automotive Systems and Software Engineering.

[18] Staron, M. (2021). AUTOSAR (AUTomotive Open System ARchitecture). In: Automotive

Software Architectures. Springer, Cham.

[19] Hanselmann, H. (2008). Challenges in automotive software engineering. ICSE Companion '08.

[20] Zhai, Y., Vetter, A., & Sax, E. (2023). Analysis of Current Challenges of Automotive Software

in the View of Manufacturing. SAE Technical Paper Series.

[21] Liu, Z., Zhang, W., & Zhao, F. (2022). Impact, Challenges and Prospect of Software-Defined

Vehicles. Automotive Innovation, 5, 180 - 194.

[22] K. Lundqvist and J. Srinivasan, "A First Course in Software Engineering for Aerospace

Engineers," 19th Conference on Software Engineering Education & Training (CSEET'06), Turtle Bay,

HI, USA, 2006, pp. 77-86, doi: 10.1109/CSEET.2006.5.

[23] Filho, P.S. (2018). The growing level of aircraft systems complexity and software investigation.

[24] Vassev, E., Hinchey, M. (2014). Software Engineering for Aerospace: State of the Art. In:

Autonomy Requirements Engineering for Space Missions. NASA Monographs in Systems and Software

Engineering. Springer, Cham.

[25] Vassev, E., Hinchey, M. (2012). Fundamentals of Designing Complex Aerospace Software

Systems. In: Hammami, O., Krob, D., Voirin, JL. (eds) Complex Systems Design & Management.

Springer, Berlin, Heidelberg.

[26] Aubrey, D. (2023). The Future of Avionics: High Performance, Machine-Learned and Certified.

[27] Rengasamy, D., Morvan, H.P., & Figueredo, G.P. (2018). Deep Learning Approaches to Aircraft

Maintenance, Repair and Overhaul: A Review. 2018 21st International Conference on Intelligent

Transportation Systems (ITSC), 150-156.

[28] Hassan, K., Thakur, A.K., Singh, G. et al. Application of Artificial Intelligence in Aerospace

Engineering and Its Future Directions: A Systematic Quantitative Literature Review. Arch Computat

Methods Eng (2024).

[29] Ucar A, Karakose M, Kırımça N. Artificial Intelligence for Predictive Maintenance

Applications: Key Components, Trustworthiness, and Future Trends. Applied Sciences. 2024; 14(2):898.

Vyas and Xu 2024 Science Transactions ©

361

[30] Moleda M et al. From Corrective to Predictive Maintenance—A Review of Maintenance

Approaches for the Power Industry. Sensors. 2023; 23(13):5970.

[31] Taheri, E., Kolmanovsky, I.V., & Gusikhin, O. (2019). Survey of prognostics methods for

condition-based maintenance in engineering systems. ArXiv, abs/1912.02708.

Authors

Vikas Vyas is a visionary leader with a proven

track record of driving innovation in the

automotive and aerospace industries. With over

15 years of experience, he specializes in program

and product management and development of

cutting-edge technologies. Currently serving as a

technical lead at Mercedes-Benz Research &

Development North America, Vikas is at the

forefront of autonomous driving, overseeing

market analysis, research, and development of

advanced automotive solutions, shaping the

future of mobility. Prior to his role at Mercedes-

Benz, he led global teams at Bosch USA, where

he spearheaded the development of safety-

critical EV steering systems with integrated

cybersecurity. His career began at Rockwell

Collins, focusing on software for aerospace

display systems. Vikas holds a certificate from

the University of California, Berkeley, Haas

School of Business, and an engineering degree

from Rajasthan Technical University, Kota,

India. He has four pending US patents and has

authored multiple articles and chapters. As a

senior member of IEEE and an active member in

SAE, Vikas is dedicated to advancing industry

standards and knowledge.

Zheyuan Xu specializes in autonomous driving,

mechatronics, ADAS development and over-the-

air (OTA) algorithm development and works as

a software solution provider with automotive

clients such as Mercedes-Benz Research &

Development North America. Zheyuan holds

bachelor’s and master’s degrees from Georgia

Institute of Technology and University of

Washington, is a co-inventor on two US patents

and co-authored an award-winning research

paper on indoor autopilot systems.

