
Science Transactions © 2024 International Journal of Advances in

Soft Computing and Intelligent Systems (IJASCIS)

2024, Vol 03, Issue 02, 303-314 Original Paper

ISSN: 3048-4987

303

PERFORMANCE EVALUATION OF SDN

CONTROLLERS: ANALYSING THE TCP TRAFFIC

MANAGEMENT IN POX, RYU, AND ODL

Shanu Bhardwaja,*, Shailender Kumarb

Ashish Girdharc

a,bDepartment of Computer Science and Engineering, Delhi Technological University,

Delhi, India, shanubhardwaj1@gmail.com
cDepartment of Computer Science and Applications, Kurukshetra University,

Kurukshetra, India,

ABSTRACT

Software-defined networking (SDN) is a revolutionary networking paradigm that separates the data and

the control plane. The controller is one of SDN's leading entities that controls the information flow in the

network. Therefore, the research deals with a thorough performance differentiation of three prominent

SDN controllers: POX, Ryu, and OpenDaylight (ODL). The study aims to evaluate these controllers'

effectiveness in controlling the network traffic by focusing on performance parameters such as

Transmission Control Protocol (TCP) mean, packet loss, and jitter. The experimental setup employed

Mininet, a network emulator, to create a consistent virtual network environment for all controllers. Each

controller was tested in isolated virtual machines, ensuring controlled and unbiased results.

The experimental results reveal distinct performance differences among the controllers. In the research

experimentations, the highest TCP mean throughput and superior performance among all controllers are

achieved by ODL consistently, and minimum loss of the data packets and jitter is observed across all-time

instances for high-demand, large-scale networks. This study shows that choosing the right SDN controller

is crucial as it depends on particular network requirements to guide network administrators and

researchers when choosing the SDN controller best for their network.

KEYWORDS

Software-defined networking, SDN controllers, Traffic analysis, TCP traffic management

1. INTRODUCTION

SDN is an amazing network methodology that separates the control and physical planes. In this

view, it merges control and dynamic setup. Tight coupling of control and data planes in

individual devices leads to traditional networks' frequent rigidity and complexity [1]. These

restrictions are overcome by decoupling these network planes, allowing incorporated network

knowledge, administering delegations, and increasing adaptability. This centralized architecture

will give us a global view of the network, as shown in Fig. 1. Thus, it facilitates deploying new

services and applications with reduced time, enhances performance, and maximizes resource

utilization [2].

Ryu, POX, and ODL are the most extensively utilized regulators out of the many SDN

regulators accessible. Each controller presents novel aspects and capabilities handling various

use cases and needs. It is essential to understand the distinctions and how they can be used to

select the most appropriate controller for a particular system management need [3]. Among

Bhardwaj et al. 2024 Science Transactions ©

304

others, Ryu is a well-known open-source SDN controller that is well-praised for its simplicity,

adaptability, and user-friendliness [4]. It supports multiple protocols, such as Open Flow, the

SDN standard definition of control plane to data plane communication. POX is another open-

source SDN controller used for SDN examination and experimentation. The idea was to be

lightweight and easy to use. Hence, it is an excellent choice for learning and exploring SDN

concepts. Finally, the Linux Foundation funded the development of ODL, an open-source,

scalable SDN controller. It aims to expedite the adoption of SDN and NFV with a cooperative

and simple path toward improvements. On top of this, traffic examination is essential for SDN

controllers because numerous factors counter the compelling administration and evolution of

organizational efficiency [5].

SDN controllers offer a single point of view of the whole network, allowing continuous

intrusion and traffic (information) flow observation. This allows centralized control network

administrators to optimize traffic flows dynamically, identify congestion points, spot anomalies

[6], etc. This allows SDN controllers to program the organization through SDN controllers,

allowing robotized traffic designing and improving the organization's proficiency and execution.

Additionally, SDN supports the execution of cutting-edge safety efforts by allowing fine-

grained command over traffic streams and fast reaction to anticipated risks. Thus, SDN

controllers are a powerful tool for modern traffic analysis because of these capabilities, which

can enhance end-user quality of service, reduce operational costs, and increase network

reliability [7]. Used in lots of different contexts to improve network agility, security, and

efficiency, these controllers will be put to work. Ryu can be found in networks of any size,

small to medium, primarily because of its ease of use and ability to develop quickly. Habitually,

POX is employed in educational establishments and analysis laboratories to instruct and

investigate ideas of SDN. As it is scalable and offers comprehensive features, ODL is preferred

over other alternatives in large-scale deployment in telecommunications and enterprise

environments [8]. It becomes essential to choose a proper controller, as each has advantages and

a distinct capacity to suit a particular niche application.

Figure 1. SDN Architecture

The author compares Ryu, POX, and ODL SDN controllers in this paper. Several performance

parameters have been used for this comparison, such as control response time, data flow

efficiency, and network latency. Based on the simulation results, the author concludes which

SDN controller is the best for traffic analysis. This study highlights the strengths and

Bhardwaj et al. 2024 Science Transactions ©

305

weaknesses of each controller based on different performance metrics, providing valuable

insights into their effectiveness and suitability for network management and optimization.

2. BACKGROUND

This section highlights the SDN controllers' distinct development histories and primary use

cases.

2.1. Traditional Networking vs SDN

Due to the decentralized idea of connection plan-making in conventional networks, in some

cases, traffic analysis is usually constrained by it as control and information planes are executed

inside gadgets. Network managers find it tedious and likely to be riddled with irregularities [9]

to gather information from several sources. This is often not a powerful tool to analyze traffic

patterns or diagnose issues because of the local visibility and slow response times that it entails.

However, traffic analysis is done centrally through SDNs with software-based controllers

accessing the entire network. This centralization allows for the detection of anomalies,

improvement of performance, enforcement of security policies, and the enabling of real-time

traffic flow monitoring. Additionally, the programmability found in SDNs enables the use of the

latest analytics and machine learning algorithms to gain greater insight and control by traffic

management administrators [10]. The advantage of SDNs is that traffic analysis is more

accurate and efficient, making the response time to network conditions and potential threats

quicker and more efficient.

Table 1. Properties of the SDN controllers.

Features RYU POX ODL

Language Support Python Python Java

Platform Support Linux, Windows Linux Linux

Structure Lightweight Lightweight Extensible

Virtualization Mininet Mininet Mininet

Northbound API REST etc. RPC etc. REST etc.

Southbound API OpenFlow, BGP, etc. OpenFlow OpenFlow,

NETCONF, etc.

Documentation Good Basic Extensive

Scalability Small scale Small scale Large scale

Modularity Basic Basic High

2.2. Ryu controller

Ryu is a well-known open-source SDN controller known for being straightforward, adaptable,

and simple. OpenFlow, the standard for SDN communication between the control and data

planes, is one of the protocols that it supports, as depicted in Fig. 2. Ryu gives a far-reaching set

of libraries and instruments that work with the fast turn of events and sending of organization

applications [11]. It is broadly utilized in scholarly examination and tiny to medium-sized

creation conditions because of its direct engineering and broad documentation. Some of Ryu's

real-time applications include traffic engineering, network automation, and security monitoring,

making it an adaptable option for various network scenarios.

Bhardwaj et al. 2024 Science Transactions ©

306

Figure 2. Architecture of Ryu SDN controller

2.3. POX controller

POX is another open-source SDN controller instrumental in SDN examination and training [12].

It is intended to be lightweight and straightforward, making it a superb decision for learning and

exploring different avenues regarding SDN ideas, as shown in Fig. 3. POX's simplicity makes it

a valuable tool for developing and evaluating new SDN applications, even though it may lack

the same level of sophistication and scalability as Ryu or ODL, also shown in table 1. POX is

frequently utilized in experimental setups to validate novel networking concepts and in

academic settings to teach SDN principles in real-world scenarios [13].

Figure 3. The architecture of the POX SDN controller

2.4. ODL controller

ODL is a vigorous and versatile open-source SDN controller created under the Linux

Establishment. A development process that is open and collaborative aims to accelerate the use

Bhardwaj et al. 2024 Science Transactions ©

307

of SDN and NFV. OpenFlow, NETCONF, and BGP are just a few of the many southbound

protocols that ODL can handle, making it ideal for large-scale production environments. Its

modular design makes it easy to customize and integrate with various network management

tools [14]. ODL is broadly utilized in broadcast communications, server farms, and undertaking

networks for organization virtualization, administration coordination, and high-level network

analytics [15]. Fig. 4 depicts the architecture of the ODL controller in the SDN environment.

Figure 4. The architecture of the ODL SDN controller

3. METHODOLOGY

To implement Ryu, POX, and ODL controllers for traffic analysis in an SDN environment, the

first step involves ensuring that the servers or virtual machines have adequate resources and a

compatible operating system, such as Ubuntu. Designing an appropriate network topology is

crucial for practical traffic analysis, and this has been achieved using network emulation tools

like Mininet to create virtual networks suitable for testing. The flow of the implementation of

the proposed research work is depicted in Fig. 5 and Table 2.

The next step is the installation of the SDN controllers. For the Ryu controller, dependencies

such as Python3 and related packages have been installed. Ryu itself can be installed

using Python's package installer (pip). Similarly, cloning the POX repository and

installing the POX controller requires Python 2.7 and pip. Beginning POX is direct with

a basic order to start the controller. ODL, being more complex, includes downloading

the ODL conveyance from the authority site, extracting the documents, and beginning

the ODL utilizing the Karaf compartment. This setup guarantees that each controller is

prepared for design and combination.

Each controller's traffic monitoring applications or components must be set up when the

controllers are configured for traffic analysis. For Ryu, existing applications, such as

simple_monitor_13.py, can be utilized, and this has begun through the Ryu manager.

Regarding POX, traffic examination parts can be incorporated into the POX

environment by beginning POX with these particular parts. ODL requires establishing

elements like old-l2switch-switch, which work with traffic investigation. Sending

traffic-checking applications inside ODL includes successfully utilizing the Karaf

climate to deal with these highlights.

Coordinating the controllers with the network is the last step, where devices like Mininet

assume a vital part. Installing Mininet and constructing a network topology capable of

Bhardwaj et al. 2024 Science Transactions ©

308

communicating with the SDN controllers is essential. Each controller must be

configured for this network to be managed and monitored. For instance, Mininet can

begin with a predefined geography that interfaces with the SDN controllers,

empowering them to accumulate traffic information and perform examinations. This

integration considers ongoing traffic observing, anomaly detection, and execution

improvement across the network, utilizing the abilities of Ryu, POX, and ODL.

Table 2. Steps of the implementation.

Steps to be followed Implementation

Setting up the environment • Hardware and software requirements

• Network topology

Installing SDN controllers • Ryu controller

i. Install dependencies

ii. Install Ryu

• POX controller

i. Install dependencies

ii. Install POX

• ODLcontroller

i. Download ODL distribution

ii. Extract the file

tar –xvf distribution-karaf-x.x.x.tar.gz

iii. Start ODL

cd distribution-karaf-x.x.x./bin/karaf

Configuring the controllers

for traffic analysis
• Ryu controller

i. Develop or use existing Ryu applications for

traffic analysis.

ii. Start application ryu-

managerpath/to/your/application.py

• POX controller

i. Create or use existing POX components for

traffic analysis.

ii. Start POX with the traffic analysis.

• ODL controller

i. Install necessary features for traffic analysis.

ii. Develop or use existing ODL applications

for traffic monitoring.

iii. Deploy the application in the ODL

environment using Karaf.

Integrating the controllers

with the network
• Mininet setup

i. Installation

ii. Network Topology

Traffic analysis • Data collection

• Real-time monitoring

Bhardwaj et al. 2024 Science Transactions ©

309

Figure 5. Implementation flow of the proposed SDN setup.

4. RESULTS AND DISCUSSION

This research's results and discussion section include a comparative analysis of three prominent

SDN controllers, Ryu, POX, and ODL, as well as an analysis of their implementation and

ability to perform traffic analysis. This begins with successfully installing and configuring each

Mininet virtual network environment controller and then evaluates the controllers' traffic

monitoring capabilities. The practical implications of each controller are examined based on key

performance metrics such as latency, scalability, ease of integration, and others.

4.1. TCP mean

In TCP mean [16], we used a methodical approach that included environment setup, traffic

generation, and mean estimation to precisely examine how well the POX, Ryu, and ODL

controllers handled TCP traffic within an SDN. This method ensures we have methodically

evaluated and differentiated each controller's traffic analysis capabilities.

The TCP was used to measure POX, Ryu, and ODL for evaluation at 30 seconds, 20

seconds, and 10 seconds, respectively, as shown in Fig. 6. The TCP mean is compared to

various time instances in the table. For each time interval, the performance of the controllers is

recorded. At the 30-second mark, ODL shows the highest throughput, followed by Ryu. At 20

seconds, ODL's throughput decreases, while Ryu and POX register 26.6 and 25.05, respectively.

At 10 seconds, ODL maintains a high throughput of 32.49, Ryu peaks at 29.4, and POX records

23.6. These results suggest that ODL consistently outperforms the other controllers in terms of

mean TCP throughput across all time intervals. At the same time, Ryu and POX show variable

performance, with Ryu generally performing better than POX.

Bhardwaj et al. 2024 Science Transactions ©

310

Figure 6. TCP means of POX, Ryu, and ODL controller.

4.2. Jitter and Packet loss

The bar graph illustrates packet loss percentages and jitter values (in milliseconds) for three

SDN controllers, POX, Ryu, and ODL, at three different time intervals: 10 seconds, 20 seconds,

and 30 seconds, as shown in Fig. 7.

At 10 seconds, POX exhibits the highest packet loss, followed by Ryu with a noticeable amount

and ODL with minimal packet loss. POX shows the highest jitter, while Ryu and ODL have

significantly lower jitter values. At 20 seconds, Packet Loss: POX continues to have the highest

packet loss, with Ryu showing moderate packet loss and ODL maintaining a low packet loss

rate. Once again, POX has the highest jitter, while Ryu and ODL show very low jitter. At 30

seconds, POX remains with the highest packet loss, Ryu has moderate packet loss, and ODL

displays the least packet loss. POX still has the highest jitter, with Ryu showing less and ODL

having minimal jitter.

Fig. 8 provides an overview of network performance metrics, specifically jitter and packet loss,

across different network controllers named POX, Ryu, and ODL at various bandwidths such as

500 Mbps, 600 Mbps, 700 Mbps, and 800 Mbps. Jitter measures the variability in packet arrival

times, while packet loss represents the percentage of lost data packets. Among the controllers, Ryu

demonstrates the best performance overall, with the lowest jitter and packet loss across most

bandwidths, particularly excelling at 700 Mbps with minimal packet loss. ODL also shows strong

performance but slightly higher jitter than Ryu, especially at higher bandwidths. While consistent

in jitter, POX exhibits higher packet loss than Ryu and ODL. This indicates that Ryu is the most

efficient in terms of both consistency and reliability of data transmission. At the same time, ODL

performs well but with a bit more variability, and POX shows some limitations in maintaining low

packet loss.

Bhardwaj et al. 2024 Science Transactions ©

311

Figure 7. Jitter and packet loss of the SDN controllers in distinct time instances.

Figure 8. Jitter and packet loss of the SDN controllers in distinct bandwidth.

Bhardwaj et al. 2024 Science Transactions ©

312

5. CONCLUSION

The performance comparison of POX, Ryu, and ODL SDN controllers for TCP throughput,

packet loss, and jitter was made, and variation was observed. ODL performed better than the

others, as ODL achieved the highest mean of the TCP throughput, the least amount of packet

loss, and lower jitter than the other flows, making it efficient in large-scale high-performance

networks. Ryu demonstrated better results than the previous experiments with an average

interconnect time of 63.069 milliseconds and packet transfer rate of 7.050 Mbps, thus exceeding

the POX performance but still lacking ODL’s capabilities, implying that the Ryu is fine for

medium-sized Networks with the comprehension of easier use while still being potentially

faster. However, due to its lowest throughput, highest packet loss rate, and highest jitter, POX is

ideal for small-scale networks and educational and testing environments where consolidation is

valued most. Thus, this research emphasizes the importance of selecting the right SDN

controller to provide high-quality and reliable network performance and adapt to specific

network needs and environments.

Disclosure of Interests. The author has no competing interests to declare relevant to this

article's content.

REFERENCES.

[1] Chahal, J. K., Bhandari, A., & Behal, S. (2024). DDoS attacks & defense mechanisms in SDN-

enabled cloud: Taxonomy, review, and research challenges. Computer Science Review, 53, 100644.

[2] Abdi, A. H., Audah, L., Salh, A., Alhartomi, M. A., Rasheed, H., Ahmed, S., & Tahir, A. (2024).

Security Control and Data Planes of SDN: A Comprehensive Review of Traditional, AI and MTD

Approaches to Security Solutions. IEEE Access.

[3] Bhardwaj, S., & Girdhar, A. (2023). Network traffic analysis in software-defined networking

using Ryu controller. Wireless Personal Communications, 132(3), 1797-1818.

[4] Bhardwaj, S., & Girdhar, A. (2021, November). Software-defined networking: A traffic

engineering approach. In 2021 IEEE 8th Uttar Pradesh Section International Conference on

Electrical, Electronics and Computer Engineering (UPCON) (pp. 1-5). IEEE.

[5] Adanza, D., Gifre, L., Alemany, P., Fernández-Palacios, J. P., González-de-Dios, O., Muñoz, R.,

& Vilalta, R. (2024). Enabling traffic forecasting with cloud-native SDN controller in transport

networks. Computer Networks, 250, 110565.

[6] Shirmarz, A., & Ghaffari, A. (2020). Performance issues and solutions in SDN-based data

center: a survey. The Journal of Supercomputing, 76(10), 7545-7593.

[7] Bhardwaj, S., Panda, S. N., & Datta, P. (2020, December). Layer-Based Attacks in the Ternary

Planes of Software-Defined Networking. In 2020 IEEE International Women in Engineering (WIE)

Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 292-295). IEEE.

[8] Maleh, Y., Qasmaoui, Y., El Gholami, K., Sadqi, Y., & Mounir, S. (2023). A comprehensive

survey on SDN security: threats, mitigations, and future directions. Journal of Reliable Intelligent

Environments, 9(2), 201-239.

[9] Indrason, N., & Saha, G. (2024). Exploring Blockchain-driven security in SDN-based IoT

networks. Journal of Network and Computer Applications, 103838.

Bhardwaj et al. 2024 Science Transactions ©

313

[10] Jiang, W., Han, H., He, M., & Gu, W. (2024). ML-based pre-deployment SDN

performance prediction with neural network boosting regression. Expert Systems with

Applications, 241, 122774.

[11] Bhardwaj, S., & Panda, S. N. (2022). Performance evaluation using RYU SDN

controller in software-defined networking environment. Wireless Personal Communications, 122(1),

701-723.

[12] Cabarkapa, D., & Rancic, D. (2021). Performance Analysis of Ryu-POX Controller in

Different Tree-Based SDN Topologies. Advances in Electrical & Computer Engineering, 21(3).

[13] Rizaldi, M. I., Yusuf, E. A. S., Akbi, D. R., & Suharso, W. (2024). A Comparison of

Ryu and Pox Controllers: A Parallel Implementation. Jurnal Online Informatika, 9(1), 1-9.

[14] Hassen, H., & Meherzi, S. (2024). Performance evaluation of centralized and

distributed controllers in software-defined networks. International Journal of Wireless and Mobile

Computing, 27(2), 103-117.

[15] Singh, A., Kaur, N., & Kaur, H. (2022). Extensive performance analysis of

OpenDayLight (ODL) and open network operating system (ONOS) SDN

controllers. Microprocessors and Microsystems, 95, 104715.

[16] Adhikari, T., Kumar Khan, A., & Kule, M. (2024). ProDetect: A Proactive Detection

Approach of the TCP SYN Flooding Attack in the SDN Controller. IETE Journal of Education, 1-12.

Authors

Shanu

Bhardwaj is

currently

pursuing PhD

in the

Department of

Computer

Science &

Engineering at

Delhi

Technological University, Delhi, India. She has

completed her B. Tech in Computer Science and

Engineering at Kurukshetra University,

Kurukshetra (India), and her M.E. at Chitkara

University, Punjab (India). Her research areas

are Software-Defined Networking (SDN), the

Internet of Things (IoT), Wireless Sensor

Networks (WSN), and Network Security. She

completed her “Application of Big Data in

Construction Law” internship at Tamkang

University, Taiwan.

Prof. Shailender

Kumar has worked as

a Professor in the

Department of

Computer Science &

Engineering at Delhi

Technological

University since

December 2018. He

has a total of more than 17 years of Teaching

Experience. He has 20 SCI/SCIE and other

publications. His primary research areas are

Network Security, Computer Networks,

Database Management Systems, and Machine

Learning.

Dr. Ashish

Girdhar has

worked as an

Assistant

Professor in

the

Department of

Computer

Science &

Applications

at Kurukshetra University since 2022. He has a

total of more than 12 years of Teaching

Bhardwaj et al. 2024 Science Transactions ©

314

Experience. He has a PhD in Image Processing

from Thapar Institute of Engineering and

Technology, Patiala. He has 7 SCI/SCIE

Publications and a few other publications. His

primary areas of research are Image Processing

and Machine Learning.

