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ABSTRACT  

Multimodal remote sensing data plays a crucial role in disaster management by providing comprehensive information for 

effective response and recovery. However, current disaster detection and prediction mainly rely on satellite images and 

sensors. This study investigates the use of data fusion techniques and deep learning models to process diverse remote 

sensing data sources from different modalities to enhance disaster response strategies and decision-making. By 

synthesizing the existing literature and research findings, this study examines the current state- of-the-art approaches, 

challenges, and opportunities in leveraging diverse remote sensing data types, such as satellite imagery, LiDAR data, 

GPS, and GNSS data. This study provides a comprehensive overview of the utilization of multimodal remote sensing 

data in disaster management for various phases of disasters, such as the pre-disaster, during-disaster, and post-disaster 

phases. Natural disasters with catastrophic consequences, such as earthquakes, landslides, and floods, are the focus of this 

study. By critically evaluating the strengths and limitations of existing methodologies, this study aims to identify gaps in 

research and propose future directions for advancing the use of deep learning in multimodal data.  
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1. Introduction  

The term ”Remote sensing” is a geospatial technology concept in which information is acquired from a 
distance and sensors are utilized to collect data from satellites [1]. Remote sensing is crucial for disaster 
management. ”Remote sensing plays a vital role in disaster management by providing timely and useful 
information for emergency responses and recovery” [2]. The data captured from these satellites can have 
various forms, depending on the sensors used. These data can include images, time-series data, and 
electromagnetic radiation. [3].Satellites use two types of sensors: active and passive sensors (Figure 1)Both 
sensors use different data collection methods [4]. The difference between these sensors lies in the way in which 
they collect data. Active sensors are independent of external resources. The active sensors independently 
obtained light energy illumination. The target was first illuminated by the emitted light. The information was 
obtained by recording the reflected light. ”An active sensor sends radar waves that bounce from the Earth’s 
surface” [5]. The time required for the waves to hit the earth’s surface and the time taken by the sensor to 
record the data were utilized to create an image. Light detection and ranging (LiDAR) sensors are an example 
of such active sensors. It can capture images with high dimensions and provide valu- able information about 
affected areas [6]. Passive sensors rely on external illumination such as sunlight to provide light. They capture 
the light emitted by the sun on the Earth’s surface. When sunlight illuminates an 
object on Earth, it is reflected. The passive sensor uses these reflected waves to capture information. Active 
sensors are believed to be more energy efficient than passive sensors because they do not require external 
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sources to emit light.  

 
Figure 1. Active and Passive Sensors [7]  

Disaster management can be categorized into three phases: pre-disaster, disaster, and post-disaster [8]. In the 
pre-disaster phase, remote sensing data can contribute to early warning systems. Pre-disaster phase is the 
period preceding real disasters. Remotely sensed data is highly valuable during the pre-disaster phase for 
preparedness, planning, and risk assessment [9]. It is used to identify potential natural hazards such as floods, 
landslides, and earthquakes. By analyzing historical data and patterns, experts can assess the likelihood and 
magnitude of these hazards in specific areas. A system designed for early warning can provide alerts by 
analyzing meteorological data. This early warning of disasters can aid in timely decision making [10]. During 
the Disaster phase, remote sensing is used to provide real-time and near-real-time information to guide 
emergency response. Remote sensing aids in evaluating damage to critical infrastructure such as roads, bridges, 
power lines, and communication net- works. Navigational support can be provided for evacuation during 
disasters. This can include optimized routes, which can easily identify alternative methods, real- time 
monitoring, and systems that can track public transportation facilities. Drones equipped with remote sensing 
technology can rapidly capture high resolution imagery of disaster affected areas, particularly in scenarios 
where access is limited or dangerous for humans. Post-disaster phase provides information about the severity 
and damage of a disaster can be obtained by analyzing the information from different views of satellite images. 
DL algorithms can fuse various types of remotely sensed data, such as satellite imagery [11], drone imagery, 
and social media data, to provide a comprehensive understanding of the real-time impact of a disaster. Images 
taken before and after an earthquake are compared pixel-by-pixel by change detection algorithms.It can be 
used to identify significant changes that may indicate a structural damage or collapse particularly image 
segmentation and object detection models can automatically identify and delineate landslide affected areas, 
damaged infrastructure, and potential hazards [12].  

This study is structured into five sections that comprehensively address the role of remote sensing in disaster 
management. The first section introduces the various remote sensing techniques used in this field. The second 
section discusses different types of remotely sensed data and their integration with deep-learning models. The 
third section focuses on data fusion and explores various techniques for integrating multiple modalities of 
remotely sensed information. The fourth section evaluates and compares the data fusion methods employed 
by researchers, providing a critical analysis to identify optimal solutions to the challenges faced in disaster 
management. Finally, the fifth section summarizes the research findings and outlines the future directions for 
this important area. 

2.Types of Remotely Sensed Data for Disaster Management  

2.1.Global positioning system (GPS)  

A global positioning system (GPS) can be used for real-time tracking and monitor- ing. GPS is a valuable tool 

for detecting landslides and earthquakes by monitoring the changes in ground movements. GPS provides 

precise location information, allowing the detection of even small movements on the Earth’s surface, which 

may indicate the onset of a landslide or earthquake. Hence, they can be used to obtain ground motion maps 
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during earthquakes [13]. Conventionally, earthquake prediction has been performed using various 

seismological changes that have been used to provide information about the shaking of earth plates[14]. From 

this, we can determine the magnitude of the earthquake as it relates to the energy released during the event. 

This can be deter- mined by continuous monitoring of ground movements.  

 

Figure 2. GPS Working Figure 3. GNSS Working [17]  

Researchers have found that the energy released during an earthquake is directly proportional to ground 
displace- ment after an event occurs. Displacement is a measurement of the extent to which a surface moves 
during an earthquake. The displacement information can be used to predict the magnitude of an earthquake 
[15]. A station is maintained to monitor this information. The final displacement, which compares the positions 
of the stations before and after the event, was calculated to determine the magnitude of the earth quake. 
Because the data were collected at intervals, GPS cannot be utilized to measure genuine ground shaking. The 
receiver logs data provided by the satellites at regu- lar intervals throughout the day. Therefore, GPS is not 
used to directly measure the ground shaking during an earthquake. GPS can measure the speed at which ground 
movement occurs and can be an early indicator of landslide or earthquake activity. They can also measure 
changes in acceleration, which can help to detect sudden movements associated with earthquakes or landslides 
[16]. By integrating GPS data with deep learning algorithms, the system can enhance the accuracy of 
geolocation appli- cations, thereby enabling earthquake prediction (Figure 2). This allows the GPS to provide 
valuable insights into seismic events and improve early warning systems for earthquakes and landslides.  

2.2.Global Navigation Satellite System (GNSS)  

Global Navigation Satellite System (GNSS) data is a comprehensive system that inte- grates various satellites, 
such as GLONASS, GPS, and Galileo, to enhance accuracy and reliability. By receiving multiple signals from 
different satellite transmitters, a single receiver can improve the precision. More signals are equivalent to an 
increased accuracy and reliability [18]. The system consists of a control segment that monitors and 
communicates with satellites and a user segment where receivers capture and decode satellite signals. After 
receiving the signals, the receiver measures the distance by calculating the time delay from which the signal 
was broadcasted and received. This helps in finding out the location information by 
comparing the initial satellite locations. The signals are received continuously and can be extracted in time 
series form. These time-series data can be used to train the DL model to predict locations easily and for route 
optimization purposes. This method can be used to obtain more accurate results. This may be helpful in the 
post-disaster phase for rescue teams. The Researchers have found that various GNSS-based techniques can be 
used to obtain more accurate findings. One of them is GNSS Total Electron Count (TEC). The concept of total 
electron count (TEC), in which the total number of electrons traveling between the path of the satellite and the 
receiver is counted, is used to learn more about ionospheric disturbances.Earthquakes cause subtle stress on 
Earth’s crust, and plate tectonic movements occur [19].  

Another technique is the GNSS radio occultation (RO) that uses signals from GNSS to study the Earth’s 
atmosphere and ionosphere. Although RO is primarily used for atmospheric studies, it can also provide 
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valuable data for detecting earth- quakes through the following mechanisms: Earthquakes cause disturbances 
in the ionosphere and upper part of the Earth’s atmosphere. These disturbances can be detected using GNSS 
RO by observing changes in the propagation of radio signals through the ionosphere [20]. Earthquake-induced 
disturbances in the ionosphere can be detected through GNSS RO by monitoring changes in radio signal 
propagation, phase, and amplitude. Some studies have suggested that GNSS RO data can capture pre-seismic 
signals in the ionosphere before an earthquake occurs. These signals are hypothesized to be related to the build-
up of stress in the Earth’s crust before a seismic event, and can potentially provide an early warning of an 
impending earthquake.  

2.3.Satellite Imagery Data  

Synthetic Aperture Radar (SAR) is an active sensor that records data from signals reflected from Earth’s 
surface. SAR satellites provide continuous monitoring capabilities, offering detailed images of affected areas 
day and night, independent of weather conditions. This provides the advantage of obtaining information 
regardless of weather conditions. This makes SAR particularly valuable for monitoring disasters in areas prone 
to natural disasters. High dimensional images can be created using SAR data, through which the smallest 
amount of information on the Earth’s surface can be analyzed, allowing for detailed mapping of affected 
areas[21]. SAR data can be used to detect changes in Earth’s surface before and after a disaster. This includes 
identifying areas of land subsidence, uplift, or lateral movement that can indicate the potential for landslides 
or earthquakes. SAR images are analyzed using Deep Learning algorithms to automatically identify and 
recognize damage, providing a precise assessment of the impacted regions [22]. SAR can offer data on the 
extent of floods, inundation visualization, landslide detection, and deformation of surface earthquakes.  

3.  

Figure 3. LiDAR [23] Figure 4. SAR  

Light Detection and Ranging (LiDAR) is a remote sensing technology that utilizes laser light to measure 
distances and create high-resolution digital elevation models (DEMs) of Earth’s surface [23]. LiDAR works 
by emitting rapid pulses of laser light towards the Earth’s surface and measuring the time it takes for light to 
reflect back [24]. By analyzing the reflected light, LiDAR can create highly detailed 3D maps of Earth’s 
surface. It can detect subtle changes on the Earth’s surface, such as fault lines or ground deformation, which 
may indicate potential seismic activity. These changes can be identified by comparing LiDAR scans taken at 
different times. It can identify areas where the ground has shifted or vegetation has been disturbed, which are 
signs of potential landslide activity. The ability of LiDAR to provide highly detailed and accurate topographic 
data makes it a valuable tool for assessing earthquake and landslide risks and monitoring changes in the 
landscape over time [25].  

3. Multimodality Data Fusion Techniques  

To obtain more precise findings, the concept of data fusion has been implemented in this field of work, in 
which fusion refers to the process of combining information from multiple sources and modalities. Data fusion 
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techniques are applied at different levels, including raw data-level fusion, feature level fusion, and decision 
level fusion [26]. There are a few methods for achieving data fusion, including early fusion, late fusion. In the 
early fusion technique, different modalities were combined at the input level. This means that the data were 
merged before being fed to the Deep Learning model. Input data from different sources or modalities were 
combined at the beginning of the network before any significant processing occurred [27]. It allows the model 
to learn the joint representations of input modalities from the beginning. It can be applied to raw or 
preprocessed data obtained from remote sensors. At this stage, we can extract the features from the 
preprocessed data and then combine multiple types of data into a single feature space. Hence, early fusion is 
also known as feature-level fusion. Hence, early fusion works with the raw data level, as well as the feature 
level of data fusion. It can be effective in disaster management scenarios involving satellite imagery, sensor 
data, and social media posts during a disaster and can be used to combine these different types of data into a 
single input representation for a model to predict the extent of damage or the areas most affected by the disaster. 
Early fusion combines GPS and GNSS data with satellite imagery at the input level, creating a unified 
representation that includes spatial information from GPS and GNSS, along with the visual context from 
satellite images. Fused data can be fed into a deep learning model, such as a convolutional neural network 
(CNN), for feature extraction. The model can learn to extract features that capture both spatial information 
(from GPS and GNSS) and visual information (from satellite images) relevant to the disaster management task. 
The fused data can be used to create detailed maps of the affected areas, showing the extent of the disaster, 
locations of critical infrastructure, and distribution of affected populations [28]. These maps can help in 
planning disaster response efforts and effectively allocating resources. The fused data can also be used for 
damage assessment, helping identify areas that have been most severely affected by the disaster. This 
information can guide the prioritization of response efforts and allocation of emergency services. Deep learning 
techniques for multimodal data fusion include early fusion, where input data from different modalities are 
combined at the input layer, typically through concatenation, summation/averaging, or weighted fusion.  

 
Figure 5. Data Fusion with Deep Learning [29] 

 
In late fusion, every modality is handled independently by a different Deep Learning model (Figure 5). The 
final decision was made at a later stage by combining the outputs from each model. As a result, decision level 
fusion is another term for late fusion [30]. Late fusion in deep learning involves combining information from 
different sources or modalities at a later stage in the network, after they have been processed separately through 
parallel pathways. Each modality is processed independently and the representations learned from each 
modality are combined at the fusion stage. The outputs of these networks are then combined, often through 
concatenation or another operation, and fed into the final classification or regression layer. Because the fused 
layer receives the output of previously trained Deep Learning models, the late fusion technique provides more 
accurate results. Consequently, inaccuracies resulting from various models have been addressed. Based on the 
outcomes of each trained model individually, decision-level fusion was employed to reach the ultimate 
judgements.  

4. Results of Related Works  

Several studies on disaster management have been conducted using machine-learning methods that utilize 
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remotely sensed data. A comparative analysis was conducted to identify the research opportunities in this field.  

Table 1. Literature Survey 

 

Paper Conspectus Technologies and 

Algorithms Used 

Research Possibilities 

Valeri Gitis et al. [31], 

Grapenthin et al.[32], 

Hodgkinson et al. [33], 

Lyros et al. [34], 

Parameswaran et al.[35] 

This study presents a new 

technology that integrates 

geoinformation of earth remote 

sensing data utilizing the 

displacement trajectories of 

ground stations that receive 

GPS signals for prediction. 

Seismological Data 

and Conventional 

tools that record the 

shaking of the 

Earth’s surface is 

caused by seismic 

waves. 

Investigating the integration 

of various data sources, such 

as satellite imagery, ground 

sensors, and geological data, 

to develop a comprehensive 

approach 

to earthquake forecasting. 

Pan Xiong et al. [36], 

Li Xuechuan et al. [37], 

Sivakrishna et al. [38], 

Reddybattula et al. [39], 

Aarpac et al. [40], 

Nayak et al. [41], 

Costantino et al. [42], 

Xuechuan et al. [37] 

The utilization of GNSS 

TEC data for earthquake 

precursor detection, coupled 

with a cutting edge deep 

learning framework, 

contributes to the 

advancement of early 

warning systems and 

seismic activity forecasting 

methods. 

Encoder–decoder 

Long short-term 

memory (LSTM) 

for 

handling the 

time series data. 

Investigating the 

integration of diverse 

datasets, such as seismic 

data, satellite imagery, 

and geological 

information, to improve 

the performance and 

reliability of earthquake 

prediction models. 

Stefania Bonafoni et al. 

[43], 

Vardaan et al. [44], 

Chin et al.[45], 

Cai et al. [46], 

Wang et al. [47], 

Mukesh et al. [48] 

The utilization of GNSS 

TEC data for earthquake 

precursor detection, coupled 

with a cutting-edge DL 

framework, contributes to 

the advancement of early 

warning systems and seismic 

activity forecasting 

methods. 

LSTM Model for 

TEC time series 

data, 

Comparison with 

DNN, Random 

Forest (RF), 

Support 

Vector Machine 

(SVM), Decision 

Tree (DT). 

Research possibilities 

need to explore the 

spatial coverage of GNSS 

ground-based stations, 

which may not be uniform 

across regions, leading to 

potential gaps in the data 

collection and analysis. 

 

Amina Khan et al. [49], 

Hamidi et al. [50], 

Montello et al. [51],[52], 

Bai et al. [53], 

Rao et al. [54], 

Montello et al. [51], 

Vincent et al. [53] 

A deep learning model is 

trained on a labeled dataset 

that includes SAR images 

before and after earthquakes, 

with corresponding ground 

truth labels indicating areas of 

damage or change. 

Convolutional 

Neural Network 

(CNN), You only 

Look Once 

(YOLO), Deep 

Neural Network 

(DNN) models 

Research possibilities 

need to explore SAR 

images, as the resolution 

may not always be 

sufficient to capture 

small-scale earthquake- 

induced changes, 

impacting the precision of 

detection and prediction. 



 

 

 

Sharma and Domadiya 2024  Science Transactions © 

 

321 
 

Gupta et al. [55], 

Algiriyage et al. [5], 

Costantino et al. [42], 

Alizadeh et al. [56], 

Tanu et al. [55], 

Algiriyage, Nilani, and 

Prasanna et al. [5] 

This technique combines 

the outputs from 

individual models trained 

on different modalities to 

create a comprehensive 

prediction. 

Ensemble Deep 

Learning, 

CNNs, 

Encoder-Decoder, 

Recurrent 

Networks 

The data fusion of GPS, 

GNSS and Satellite 

images such as SAR 

images can be explored 

 

 

5. Conclusion  

In conclusion, the use of deep learning techniques for multimodal data fusion in disaster management has 

shown great potential for improving the effectiveness of disaster- response strategies. However, there are 

challenges that must be addressed to improve the effectiveness of these approaches. One of the main challenges 

is the need for high- quality and diverse data, which are crucial for training DL models and making accurate 

predictions. The analysis of articles highlighted the successes, current challenges, and future opportunities in 

using deep learning for disaster management tasks, emphasizing the need for further research to address the 

existing limitations. This study under- scores the importance of developing robust frameworks that can 

efficiently extract, analyze, and interpret multimodal data from various sources in real time to sup- port 

emergency responders in making informed decisions during crises. By addressing these challenges, deep-

learning-based multimodal data fusion can significantly enhance disaster response and management efforts.  
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