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ABSTRACT 

It is of vital importance for safety-critical applications in automotive and aerospace systems to receive 

timely software maintenance. Systems deemed safety-critical are those wherein failure could result in 

loss of life, property damage, or environmental harm, and are extensively used in aircraft, vehicles, 

medical devices, nuclear reactors, and more. Consequently, standardized and regular software 

maintenance is imperative to guarantee these systems stay secure and sheltered against vulnerabilities. 

This paper gives an overview of the role of software maintenance in automotive and aerospace domains, 

emphasizing the necessity of preserving an appropriately maintained software environment. It 

additionally addresses particular difficulties faced in the automotive and aerospace industries, 

widespread practices and approaches, and developing trends in software maintenance. The paper starts 

with a comparative evaluation of the maintenance practices across these domains, stresses the 

commonalities and differences, and outlines potential research directions to further enhance the safety 

and reliability of software in these critical applications. 
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1. INTRODUCTION 

1.1 Background 

Systems that are safety-critical are those for which failures could cause loss of life, property damage, 

or environmental harm due to their important functions relying heavily on software integrity for overall 

safety assurance. The challenges of integrating agile practices into such safety-critical system 

development are considerable. 

While large-scale agile frameworks like SAFe and LeSS have streamlined processes in the automotive 

sector, carefully customizing their rapid cycles to mandate safety cases is imperative as vehicle software 

complexity escalates, with high-end product now containing over a hundred million lines of code 

requiring rigorous validation and verification [19]. However, with diligence, progressive iterative 

refinement aligned with risk-based priorities and independent assessment can enable both productivity 

and protection when developing innovations reliant on trustworthy software functionality for public 

security. 

Incident reporting remains crucial to risk governance in safety- sensitive contexts. However, traditional 

platforms relying heavily on relational databases encounter difficulties including data extraction bias, 

precision and recall imperfections, abstraction challenges, and inter-examiner consistency issues [1]. 

To tackle these complications approaches such as computer-aided monitoring, free-form recovery and 

probabilistic reasoning, and conversational case-based rationalization have been recommended [1]. 

Software quality assurance in safety-critical domains rightly demands increased attention. It is 

particularly relevant in the context of the automotive industry, where software drives innovation and 

enables the delivery of new features [19]. The paper also reviews various safety-critical applications 

across automotive, aerospace, and other domains. The increasing prevalence of software-defined 

vehicles (SDV) is transforming the automotive industry from technology, products, services, and 

enterprise competition perspectives [21]. In the aerospace sector, the shift from time-based to condition-

based maintenance, driven by advancements in sensor technology, necessitates sophisticated data 

analysis techniques, with deep learning emerging as a promising solution [27]. 

1.2 Objectives and Scope 

The primary objective of this paper is to provide a comprehensive overview of software maintenance 

in safety-critical applications, with a particular focus on the automotive and aerospace industries. The 

paper highlights the importance of standardized software maintenance methodologies, identifies 

common challenges, and discusses current practices and emerging trends. The scope of this paper 

includes an examination of various types of maintenance, the specific challenges faced in the 

automotive and aerospace sectors, and a comparative analysis of maintenance practices across these 

domains. 
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1.3 Structure of the paper 

In this paper, section 2 defines software maintenance and discusses its importance in safety-critical 

applications, out- lining different types of maintenance activities. Section 3 provides an in-depth look 

at the automotive industry’s software systems, maintenance challenges, current practices, and tools, 

including the impact of software-defined vehicles [21]. Section 4 focuses on the aerospace industry, 

exploring the challenges of developing software for aerospace systems [24] and the application of 

artificial intelligence in aerospace maintenance [27], [28]. Section 5 showcases a comparative analysis 

of soft- ware maintenance practices across automotive and aerospace domains, highlighting common 

principles and domain-specific differences. Section 6 explores emerging trends and future directions in 

software maintenance, including the role of automation, AI, and predictive maintenance [14], [29]. 

Section 7 concludes the paper with final thoughts on the importance of software maintenance in safety-

critical applications. 

2. SOFTWARE MAINTENANCE IN SAFETY-CRITICAL 

APPLICATIONS 

2.1 Definition and Importance 

Software maintenance, which includes the modification of either software source code or binary after 

delivery [7], is crucial for correcting bugs, improving performance, and ensuring consistent user 

experience [8]. In safety-critical application fields like automotive and aerospace, where software is 

increasingly coupled with crucial functionalities, the reliability, and performance of this software are 

critical to overall system safety [1], [5]. 

Recent research mentions several aspects of software maintenance in safety-critical environments: 

• Standards on functional safety and fail-safe design approaches are non-negotiable for ensuring 

system integrity [2], [5]. 

• Developing comprehensive, clear, and verifiable requirements specifications is a major 

challenge, demanding sustained stakeholder alignment throughout the system’s lifespan [3], [24]. 

• While software implementation realizes complex functionalities and mitigates possible risks, it 

can bring in new issues if not rigorously maintained and updated [1], [4]. 

• The growing dependence on modern software systems in these sectors requires effective 

software maintenance, which is crucial given the potential for substantial financial consequences 

or even loss of life in case of system failures [5], [23]. 

2.2 Types of Maintenance 

2.2.1 Corrective Maintenance 

Corrective maintenance, as a type of reactive maintenance approach to correct identified software 

problems, is indispensable for enforcing the reliability and integrity of safety-critical software systems 

in the automotive and aerospace industries [7]. Studies show that software maintenance constitutes a 
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significant portion, often 60-90%, of the total cost of ownership for a software product [8], while a 

substantial portion of maintenance efforts, approximately 75%, is dedicated to adaptive and perfective 

maintenance. As a result, developing robust maintenance models that minimize rework expenses and 

ensure consistent customer experience is paramount, especially in domains where software failures 

carry severe consequences [7]. 

2.2.2 Adaptive Maintenance 

Adaptive maintenance, on the other hand, emphasizes the compatibility and functionality of 1 software 

applications within changing environments. This includes adapting to hardware changes, operating 

system changes, software dependency modifications, and changes regulation and quality assurance 

requirements [9]. This form of maintenance is concerned about modifying software after the initial 

deployment phase to align with these requirements, ensuring its continued reliability and performance 

[9]. Automation in adaptive maintenance tasks increases efficiency in managing the evolution of 

software systems, often taking advantage of high-level specifications to generate specialized code for 

this purpose [9]. 

2.2.3 Perfective maintenance 

Perfective maintenance 1 aims to refine software applications by enhancing performance and ease of 

updates. As mentioned in [11], developers focus on improving efficiency, reliability, and flexibility for 

potential changes in the source code. Visual tools can help highlight areas for improving code quality, 

lowering subsequent expenses. 

2.2.4 Preventative Maintenance 

Preventive maintenance, as one of the proactive maintenance approaches, involves modifying target 

software to detect and address potential fault and failures before they escalate into more severe issues 

[13]. This approach aims to mitigate software failure risks, minimize downtime, and ensures the 

reliability and performance of critical systems [13]. A well-structured preventive maintenance program 

is essential in safety-critical domains, where software failures can lead to severe consequences, 

resolving issues before they escalate or impact other modules. 

2.2.5 Predictive maintenance 

Predictive maintenance 2 aims to identify anomalies and forecast failures before they happen through 

leveraging data analytics and artificial intelligence. Machine learning algorithms and statistical models 

are applied to runtime system data in an effort to predict and prevent issues that could lead to downtimes 

or system failures. Research indicates this approach can help boost reliability in sectors like automotive 

manufacturing, where anomaly detection, inference methods, and optimized maintenance strategies 

[14], [15] take advantage of learned patterns from empirical performance data [29]. 
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3. AUTOMOTIVE INDUSTRY 

3.1 Overview of Automotive Software Systems 

Modern-day automotive systems rely heavily on vehicle firmware for the realization of various 

functions, ranging from basic bring-up and operation of the steering and fuel system to advanced driver-

assistance functionalities. The increasing complexity of these systems coupled with the introduction of 

the software-defined vehicles (SDVs) concept present unique challenges for software maintenance in 

the automotive industry [21]. 

3.1.1 Types of software used in automotive systems 

Auto- motive software covers a wide range of applications, which include: 

• Embedded Firmware: firmware deployed in embedded hardware serves as the backbone of 

various vehicle functions, and controls critical aspects like engine ignition, braking, and 

infotainment systems [20]. 

• Model-based Software Development: To manage the growing complexity and shortened 

development cycles, the automotive industry increasingly relies on automotive V-model 

software development. This approach utilizes modular design approaches to enhance efficiency 

and enforce safety standard compliance [17]. 

 

Fig.1. Typical workflow of preventative(left), corrective(middle) and adaptive(right) maintenance in automotive 

software. Along with perfective maintenance, they form the 4 essential phases in modern software maintenance. 
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Fig.2. Predictive maintenance workflow with AI Analytics algorithms. 

• Vehicular Internet-of-Things (IoT) and Telecommunication: Connected vehicles leverage IoT and 

telecommunication systems to exchange data with backend servers, ap- plications, and various vehicular 

components, to achieve objectives like smart mobility and advanced vehicle-based services [17]. 

3.2 Characteristics and requirements 

Automotive software systems possess unique characteristics and adhere to strict safety, performance, 

and reliability requirements. 

3.2.1 Standardization and Modularity 

The AUTomotive Open System ARchitecture (AUTOSAR) standard is key to the development of 

automotive software and system architectures, addressing modularity, variant and extension handling, 

and standardized execution management practices [18]. 

3.2.2 Safety and Security  

Given the safety-critical nature of automotive systems, compliance with industry standards like MISRA and 

AUTOSAR, along with robust practices addressing cyber security, is crucial for meeting safety and security 

requirements [19]. 

 

3.3 Maintenance Challenges in Automotive 

Maintenance of automotive software brings in several challenges due to the convoluted and safety-

critical nature of the systems: 

The exponential increase in software complexity of vehicular software brings considerable challenges 

for traditional software engineering practices. This complexity partially arises from the coupling of 

various systems and the increasing demand for more intricate and advanced functionality [19], [20]. 

• On the other hand, automotive software development is conducted under strict constraints, 

including cost, quality requirements, tight deadlines, etc. These constraints facilitate efficient 

maintenance strategies and tools [20]. 

• The trend towards software-defined vehicles (SDVs) concepts introduces new challenges. 
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Conventional research and development models need to evolve to accommodate the trend and 

new standards of SDVs [21]. 

3.4 Current Practices and Approaches 

There are several common-practice approaches and method- ologies employed to address the challenges 

posed by the maintenance of automotive software: 

• Lifecycle Plan: It is important to plan the management of the complete lifecycle of automotive 

software, taking into account factors like hardware constraints, over-the- air (OTA) updates, long-

term maintenance, and eventual phase-out of the platform. Addressing these factors ensures the 

sustainability and reliability of automotive software throughout its entire lifecycle [19]. 

• Shift-Left Testing and Verification: Early and continuous testing throughout the software 

development lifecycle is essential for automotive applications. Model-based shift- left testing, 

static analysis, and dynamic verification techniques are crucial for identifying and resolving 

issues early on, contributing to improved software quality and reduced development time [17]. 

Various tools and frameworks support the development and maintenance of automotive software: 

• Advanced Development Tools: The limitations of traditional automotive software frameworks 

necessitate the adoption of more advanced tools and development approaches. Tools like Eclipse 

Zenoh and frameworks that support building scalable architectures are becoming increasingly 

important in managing the complexity of modern automotive software [17]. 

• Cybersecurity Frameworks: With the rise of connected vehicles, robust cybersecurity measures 

are paramount. Open and flexible frameworks specifically designed for automotive applications, 

such as PENNE, are crucial for enhancing cybersecurity training and evaluating the effectiveness 

of in-vehicle network security concepts [17]. 

By adopting these practices, tools, and frameworks, the automotive industry can strive to overcome the 

challenges of maintaining increasingly complex software systems while ensuring the safety, reliability, 

and security of modern vehicles. 

4. AEROSPACE INDUSTRY 

4.1 Overview of Aerospace Software Systems 

4.1.1 Types of software used in aerospace systems 

Aerospace systems rely heavily on a diverse range of software applications to ensure safe and efficient 

operation. These applications encompass various functionalities, including: 

• Flight control systems: Responsible for managing aircraft stability, navigation, and autopilot 

functions [22]– [25]. 

• Engine control systems: Governing engine performance, fuel efficiency, and monitoring engine 
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health [27]. 

• Avionics systems: Encompassing communication, navigation, surveillance, and cockpit display 

systems [26]. 

• Mission control software: Used for spacecraft command, control, and data handling in space 

exploration missions [24], [25]. 

• Unmanned Aerial Vehicle (UAV) control systems: Enabling autonomous flight, navigation, and 

mission execution for UAVs [28]. 

4.1.2 Key Characteristics and Requirements 

Software in aerospace systems must meet stringent requirements due to the industry’s emphasis on safety, 

reliability, and mission- criticality. These requirements include: 

• High Reliability and Safety: Aerospace software must adhere to rigorous safety standards to minimize the 

risk of failures that could result in loss of life, environmental damage, or mission failure [22], [23], [25]. 

• Deterministic Behavior: The software must operate predictably and consistently, especially in real-time 

systems where timing constraints are critical [26]. 

• Certification and Compliance: Adherence to industry standards (e.g., DO-178B, ARP4754A) is 

mandatory to ensure software quality and safety [25], [26]. 

• Robustness and Fault Tolerance: The software must be able to withstand and recover from unexpected 

events, such as hardware failures or environmental disturbances [23]. 

• Security: Protecting aerospace systems from cyberattacks is crucial, demanding robust security measures 

within the software [28]. 

4.2 Maintenance Challenges in Aerospace 

4.2.1 Specific challenges in maintaining aerospace software 

Maintaining aerospace software presents unique challenges due to the industry’s specific 

constraints and operational environment. Some key challenges include: 

• System Complexity: Modern aircraft and spacecraft com- prise intricate, interconnected systems, 

making it difficult to understand the impact of software changes and potential ripple effects [23], 

[25]. 

• Safety-Critical Nature: Even minor software errors can have catastrophic consequences, 

requiring rigorous testing and verification processes [23]. 

• Long System Lifecycles: Aerospace systems often operate for decades, necessitating ongoing 

maintenance and updates to address evolving requirements and technology advancements [23]. 

Access and Downtime Constraints: Accessing software components for maintenance can be 

challenging, especially in flight-critical systems. Downtime must be minimized to maintain operational 

efficiency [27]. Due to safety and security concerns, software in aerospace domains is usually 

accessible to the outside via a wired, ad-hoc maintenance window. 
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• Data Management and Analysis: Modern avionics system generates a great amount of data and 

log records for each of its operations. Effectively strategies for management, analysis, and 

utilization of this data for maintenance purposes are crucial [27]. 

• Certification and Qualification: Software updates often require re-certification, which can be 

time-consuming and expensive [26]. 

4.3 Current Practices and Approaches 

4.3.1 Common Practice Approach and Mythologies 

A range of common practice maintenance approaches are employed by the aerospace industry to 

address existent challenges related to software maintenance: 

• Model-Based Development: Using models to represent software systems throughout the 

development lifecycle, enabling early verification and validation [17], [19]. 

• Formal Methods: Utilizing mathematical techniques for software specification, design, and 

verification to ensure correctness and reliability [24], [25]. 

• Condition-Based Maintenance (CBM): Employing sensor data and predictive analytics to 

anticipate maintenance needs and optimize maintenance schedules [27], [31]. 

• Deep Learning (DL): Leveraging DL algorithms for tasks such as anomaly detection, fault 

diagnosis, and remaining useful life (RUL) estimation [27]. 

• Digital Twins: Creating virtual representations of physical assets to simulate behavior, analyze 

data, and predict maintenance needs [14], [30]. 

4.3.2 Tools and frameworks 

Several tools and frameworks support aerospace software maintenance: 

• Integrated Development Environments (IDEs): Specialized IDEs for aerospace software 

development and de- bugging, often integrated with certification and verification tools. 

• Testing and Simulation Tools: Tools for conducting rigorous software testing, including unit 

testing, integration testing, and system-level simulation. 

• Configuration Management Tools: Managing software versions, configurations, and release 

processes to ensure traceability and control. 

• Data Analytics Platforms: Platforms for collecting, storing, processing, and visualizing aircraft 

data to support maintenance decision-making. 
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5. COMPARATIVE ANALYSIS 

5.1 Similarities Across Domains 

 

While the automotive and aerospace industries are drastically different fields and have distinct 

software maintenance requirements, they share similarities in the approach to per- form software 

maintenance for safety-critical applications: 

• Safety and Reliability Focus: Both fields prioritize the safety and reliability of their systems 

over other requirements. Software failures in either industry can cause catastrophic 

consequences, mandating the need for rigorous development, integration testing, and 

maintenance practices. 

• Standards and Certification Process: Both industries strive to meet strict safety standards and 

regulations. Automotive software must comply with various standards such as ISO-26262, while 

aerospace software complies with the guidelines like DO-178C. Compliance with these standards 

is essential for ensuring system safety and completion of necessary certifications. 

• Growing Software Complexity: Both industries are experiencing an increase in software 

complexity, which requires sophisticated maintenance strategies. 

• Model-Based Development Strategies: Both industries leverage model-based development 

techniques to manage and decouple entangled software modules and improve the efficiency of 

software development and maintenance processes. 

• Data Analytics and Management: The usage of sensors and data logging in both automotive and 

aerospace sys- tems generates a great amount of data. Both industries are exploring the potential 

of data analytics tools and data- driven methods to automate maintenance practices and predict 

potential failures. 

5.2 Domain Specific Differences 

Nevertheless, several differences exist between the automotive and aerospace industries related to 

software maintenance, including: 

• System Lifecycle: Aerospace systems usually have much longer lifecycles than automotive 

systems. Aircraft often stay operational for decades and require long-term maintenance and 

support strategies for software systems. On the contrary, automotive software lifecycles are 

shorter due to intense competition in the field and rapid iteration of software and hardware. This 

difference affects maintenance strategy, with aerospace systems requiring greater emphasis on 

long-term sustainability and retirement management, while automotive systems require 

affordability and ease of maintenance. 

• Software Development and Certification Cost: In general, the aerospace industry incurs 
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higher development and certification costs compared to the automotive industry. The strict 

safety requirements and complexity of aerospace systems, coupled with the difficulty of 

acquiring operational data, mandate extensive testing, verification, validation, and formal 

certification processes, which all contribute to the cost. 

• Production Volumes and Iteration Cycle: The automotive industry has significantly higher 

production quantity compared to the aerospace industry, which affects how software updates are 

deployed and managed. Automotive manufacturers see wide application of over-the-air (OTA) 

updates for efficient software distribution and installation across large fleets of vehicles. On 

the other hand, aerospace software updates involve more complex procedures due to the 

complexity of the systems and rigorous safety regulations. 

• Operational Conditions: Aerospace systems usually operate in harsher and more diverse 

environmental conditions than automotive systems. Common factors like adverse weather 

conditions, cruise speed, fatigue of air- frame, and extreme temperature differences pose unique 

challenges for aerospace software maintenance, mandating robust solutions that can withstand 

the worst conditions. 

• Human Factor Considerations: While both industries emphasize safety, the aerospace industry 

prioritizes more on the human factor. Pilots and astronauts rely on the integrity of software 

systems for safety-critical tasks, thus human-machine interface design in the aerospace domain 

focuses more on reliability and robustness, rather than fanciness or advanced features. 

6. EMERGING TRENDS AND FUTURE DIRECTIONS 

6.1 Trends in Software Maintenance 

The software maintenance landscape, especially the one pertaining to safety-critical industries such as 

automotive and aviation, is constantly changing. Several notable trends are reshaping software 

maintenance in these domains: 

• Artificial Intelligence and Machine Learning (AI/ML): The adoption of artificial intelligence and 

machine learning techniques is reshaping predictive maintenance land- scape [14], [29] by 

introducing automation in the pro- cess. By analyzing empirical data and past performance, 

AI/ML algorithms can identify patterns, predict potential failures, and enable preemptive 

maintenance [27], [28]. While AI/ML demonstrates potential in predictive main- tenance, 

maintenaing the reliability, trustworthiness, and interpretability of these models is crucial. 

• Digital twins, which are virtual representations of physical assets, hold great promise in 

revolutionizing engineering practices across industries [14], [30]. By replicating real-world 

operational conditions within interactive simulators, digital twins allow engineers to test and 

validate design modifications without risking costly failures. Whereas, the adoption of digital 

twins requires standardized data format and communication protocols to enable platform-
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agnostic data exchange and interoperability. Establishment of such standards will accelerate 

adoption and maximize the benefits of digital twins in maintenance applications. 

• Over-the-Air (OTA) Updates: OTA software updates are gaining popularity, especially in the 

automotive industry [21]. The ability to deliver software updates remotely and seamlessly allows 

manufacturers to achieve faster software iteration and deliver timely performance improvement 

and security fixes to the vehicle firmware. However, ensuring the safety and reliability of OTA 

updates in environments with constrained hardware re- sources remains a tough software 

engineering challenge. 

• Cyber Security: As vehicles and aircraft become increasingly connected, cybersecurity threats 

become a more prominent issue. As a result, there is an increasing need for robust 

cybersecurity measures integrated into software maintenance practices, which include secure- 

aware software development practices, periodic security audits, and timely patching of exploits 

and vulnerabilities to mitigate the risk of cyberattacks. 

7. CONCLUSION 

As an ongoing process essential to the operational safety, re- liability, and security of safety-

critical systems, continued soft- ware maintenance is crucial in the automotive and aerospace 

industries. As an inevitable trend, AI/ML, digital twins, OTA updates, and increased 

automation, hold great potential for revolutionizing software maintenance practices. 

However, they introduce new challenges, such as security concerns, model interpretability 

and explainability, and ethical considerations. As software continues to be deployed on more 

vehicular components, the importance of effective software maintenance will keep growing. 

Research, collaboration, and innovation across multiple domains are key to meeting the 

evolving demands of these safety-critical domains and ensuring road safety and well-being 

of system operators and passengers. 
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